Nuclear data uncertainty propagation: Perturbation vs. Monte Carlo

被引:65
作者
Rochman, D. [1 ]
Koning, A. J. [1 ]
van der Marck, S. C. [1 ]
Hogenbirk, A. [1 ]
Sciolla, C. M. [1 ]
机构
[1] Nucl Res & Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands
关键词
Nuclear data; Criticality-safety benchmarks; Perturbation method; MCNP; Total Monte Carlo; Sensitivity; ENDF/B-VII.0;
D O I
10.1016/j.anucene.2011.01.026
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Two methods of nuclear data uncertainty propagation are compared, using the same nuclear data uncertainties and criticality-safety benchmarks. The first method, based on perturbation theory uses covariance files, covariance processing and the perturbation card of MCNP. The second method makes use of a large number of MCNP calculations, all alike, but using different random nuclear data libraries, consistent with the covariance files of the first method. The consistency of the nuclear data used by both methods is checked and results for 33 criticality-safety benchmarks are presented. Relatively good agreements are found, but depending on the benchmark cases, differences due to the elastic cross-section, nu-bar, angular and energy distributions are observed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:942 / 952
页数:11
相关论文
共 24 条
[1]  
BAUGE E, 2010, NEA REPORT
[2]  
Briesmeister J. F., 2000, LA13709 LOS AL NAT L
[3]  
Briggs J. B., 2004, NEANSCDOC95031 ORG E
[4]   Nuclear data evaluation methodology including estimates of covariances [J].
Capote, R. ;
Smith, D. L. ;
Trkov, A. .
EFNUDAT: MEASUREMENTS AND MODELS OF NUCLEAR REACTIONS, 2010, 8
[5]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[6]   An alternative implementation of the differential operator (Taylor series) perturbation method for Monte Carlo criticality problems [J].
Favorite, JA .
NUCLEAR SCIENCE AND ENGINEERING, 2002, 142 (03) :327-341
[7]  
FAVORITE JA, 2009, P M ANS NUCL CRIT SA
[8]  
FURUTA K, 1986, UTNLR0185 NUCL ENG R
[9]  
HOGENBIRK A, 2007, P JOINT INT TOP M MA
[10]   Towards sustainable nuclear energy: Putting nuclear physics to work [J].
Koning, A. J. ;
Rochman, D. .
ANNALS OF NUCLEAR ENERGY, 2008, 35 (11) :2024-2030