Deep Alternating Projection Networks for Gridless DOA Estimation With Nested Array

被引:9
作者
Su, Xiaolong [1 ]
Hu, Panhe [1 ]
Liu, Zhen [1 ]
Shi, Junpeng [1 ]
Li, Xiang [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival estimation; Estimation; Covariance matrices; Atomic measurements; Eigenvalues and eigenfunctions; Convergence; Computational efficiency; Gridless; direction of arrival (DOA); deep unfolding network; alternating projection; nested array; OF-ARRIVAL ESTIMATION; COPRIME ARRAY;
D O I
10.1109/LSP.2022.3188446
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, deep unfolding networks with interpretable parameters have been widely utilized in direction of arrival (DOA) estimation due to the faster convergence speed and better generalization ability. However, few consider the nested array for gridless DOA estimation. In this letter, we propose a deep alternating projection network to address the problem. We first convert the covariance matrix into a measurement vector in the form of atomic norm, which can reduce the matrix dimension during projection. We then train the proposed network to alternately obtain the positive semi-definite matrix and the corresponding irregular Hermitian Toeplitz matrix, where the loss function is derived by employing the trace of network output. Finally, we apply the irregular root Multiple Signal Classification (MUSIC) method to obtain gridless DOA via nested array. We demonstrate that the proposed networks can accelerate the convergence rate and reduce computational cost. Simulations verify the performance of proposed networks in comparison with the existing methods.
引用
收藏
页码:1589 / 1593
页数:5
相关论文
共 50 条
  • [41] DOA Estimation Exploiting Moving Dilated Nested Arrays
    Qin, Guodong
    Zhang, Yimin D.
    Amin, Moeness G.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (03) : 490 - 494
  • [42] Oblique Projection DOA Estimation Algorithm Based on Spatial Polarization Characteristics
    Qu, Mingchao
    Si, Weijian
    Liu, Ruizhi
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 10809 - 10823
  • [43] Gridless Direction of Arrival Estimation Exploiting Sparse Linear Array
    Chen, Tao
    Shi, Lin
    Guo, Limin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1625 - 1629
  • [44] Block Sparse Recovery Approach for DOA Estimation in Nested Array with Unknown Mutual Coupling
    Xu, Yang
    Zheng, Zhi
    Wang, Wen-Qin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (08) : 5079 - 5090
  • [45] DOA Estimation Based on Pseudo-Noise Subspace for Relocating Enhanced Nested Array
    Zhou, Lang
    Ye, Kun
    Qi, Jie
    Sun, Haixin
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1858 - 1862
  • [46] Two-Dimensional DOA Estimation of Coherent Signal Exploiting the Motion of Parallel Array
    Ma, Penghui
    Hao, Zhimei
    Zeng, Haowei
    Li, Jianfeng
    Zhang, Xiaofei
    Gil-Pita, Roberto
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 17765 - 17770
  • [47] Rank Minimization-Based Toeplitz Reconstruction for DoA Estimation Using Coprime Array
    Liu, Shengheng
    Mao, Zihuan
    Zhang, Yimin D.
    Huang, Yongming
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2265 - 2269
  • [48] Off-grid DOA estimation for nested array using atomic norm minimisation
    Jiang, Hong
    Tang, Wen-Gen
    Pang, Shuai-Xuan
    ELECTRONICS LETTERS, 2018, 54 (23) : 1344 - 1345
  • [49] STNet: A Space-Time Network Solution for Gridless DOA Estimation With Small Snapshots for Automotive Radar System
    Zhang, Yanjun
    Huang, Yan
    Tao, Jun
    Wen, Cai
    Han, Yu
    Liao, Guisheng
    Hong, Wei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7945 - 7962
  • [50] A DOA Estimation Method for Uniform Circular Array Based on Virtual Interpolation and Subarray Rotation
    Liang, Tao
    Zhu, Min
    Pan, Feng
    IEEE ACCESS, 2021, 9 : 116760 - 116767