Photoelectric Detection and Quantum Readout of Nitrogen-Vacancy Center Spin States in Diamond

被引:42
作者
Bourgeois, Emilie [1 ,2 ]
Gulka, Michal [1 ,2 ]
Nesladek, Milos [1 ,2 ]
机构
[1] Hasselt Univ, Martelarenlaan 42, B-3500 Hasselt, Belgium
[2] IMEC, IMOMEC Div, Kapeldreef 75, B-3001 Leuven, Belgium
关键词
diamond; electrically read-out qubit; magnetic resonances; nitrogen-vacancy centers; photoelectric detection; spin readout; MAGNETIC-RESONANCE; OPTICAL-ABSORPTION; DEFECT CENTERS; TIME; PHOTOLUMINESCENCE; PHOTOCURRENT; RESOLUTION; MICROSCOPY; PHOTOCHROMISM; SPECTROSCOPY;
D O I
10.1002/adom.201902132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel method for reading out the electron spin state of the negatively charged nitrogen-vacancy (NV) point defect in diamond, based on photoelectric detection of NV magnetic resonances (PDMR), is reviewed. As a convenient way to measure the spin state of qubits, the presented technique is anticipated to lead to a vast range of applications in the field of quantum technologies. It has been demonstrated that this method can be used both in continuous-wave mode and for the pulse readout of coherently manipulated NV- spins. The PDMR technique presents interesting advantages over the commonly used optical detection of magnetic resonances (ODMR) and was recently downscaled to the reading out of a single NV- spin qubit. The principles, current developments, advantages, and drawbacks of PDMR are presented in this progress report. A complete to-date methodology of NV photoelectric readout is described and PDMR is compared to ODMR. Future developments and possible improvements of the technique are mentioned. The results of the latest studies, aiming at overcoming limitations in the PDMR contrast through a better understanding of NV photo-physics and of charge exchanges between NV centers and other electrically active defects, are discussed.
引用
收藏
页数:29
相关论文
共 162 条
[1]   Optical properties of the nitrogen-vacancy singlet levels in diamond [J].
Acosta, V. M. ;
Jarmola, A. ;
Bauch, E. ;
Budker, D. .
PHYSICAL REVIEW B, 2010, 82 (20)
[2]   Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Santori, C. ;
Fu, K. -M. C. ;
Barclay, P. E. ;
Beausoleil, R. G. ;
Linget, H. ;
Roch, J. F. ;
Treussart, F. ;
Chemerisov, S. ;
Gawlik, W. ;
Budker, D. .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection [J].
Aslam, N. ;
Waldherr, G. ;
Neumann, P. ;
Jelezko, F. ;
Wrachtrup, J. .
NEW JOURNAL OF PHYSICS, 2013, 15
[4]   Nanoscale nuclear magnetic resonance with chemical resolution [J].
Aslam, Nabeel ;
Pfender, Matthias ;
Neumann, Philipp ;
Reuter, Rolf ;
Zappe, Andrea ;
de Oliveira, Felipe Favaro ;
Denisenko, Andrej ;
Sumiya, Hitoshi ;
Onoda, Shinobu ;
Isoya, Junichi ;
Wrachtrup, Joerg .
SCIENCE, 2017, 357 (6346) :67-71
[5]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[6]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/NMAT2420, 10.1038/nmat2420]
[7]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems [J].
Bar-Gill, N. ;
Pham, L. M. ;
Belthangady, C. ;
Le Sage, D. ;
Cappellaro, P. ;
Maze, J. R. ;
Lukin, M. D. ;
Yacoby, A. ;
Walsworth, R. .
NATURE COMMUNICATIONS, 2012, 3
[9]   Literature review on: Quantum readout of spin resonance in a silicon transistor [J].
Barbaro, A. R. .
MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (08) :823-845
[10]  
Barry J.F., 2019, ARXIV190308176