Intelligent Fault Diagnosis of Rotary Machines: Conditional Auxiliary Classifier GAN Coupled With Meta Learning Using Limited Data

被引:80
作者
Dixit, Sonal [1 ]
Verma, Nishchal K. [1 ]
Ghosh, A. K. [2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol Kanpur, Dept Aerosp Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Classification; condition-based maintenance (CBM); fault diagnosis; generative adversarial network (GAN); limited fault samples; meta learning; model agnostic meta learning (MAML);
D O I
10.1109/TIM.2021.3082264
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The industrial advancement has promoted the development of deep learning (DL)-based intelligent fault diagnosis methods for condition-based maintenance (CBM). Though these methods rely on large dataset for training, the collection of large number of fault samples is not practically feasible. For this purpose, generative adversarial networks (GANs) are capable to generate high-quality synthetic samples. However, the problem still persists with the training of GAN using limited fault samples that are present in practical conditions. This article proposes a novel conditional auxiliary classifier GAN framework coupled with model agnostic meta learning (MAML) to resolve this problem. The objective is to initialize and update the network parameters using MAML instead of regular stochastic gradient learning. This modification enables GAN to learn the task of synthetic sample generation using the limited training dataset. The effectiveness of the proposed framework has been compared with several famous state-of-the-art intelligent fault diagnosis methods existing in the literature. The comparative performance has been validated on benchmarked datasets, i.e., air compressor and bearing datasets collected from a single-stage reciprocating air compressor. The proposed framework is able to achieve the classification accuracy of 99.26% and 98.55% for bearing and air compressor datasets, respectively, with only ten samples per class. Moreover, a real-time case study is performed to validate the proposed method in real time.
引用
收藏
页数:11
相关论文
共 32 条
[1]  
AIDAR, 2014, AIR COMPR DAT
[2]   Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning [J].
Cao, Pei ;
Zhang, Shengli ;
Tang, Jiong .
IEEE ACCESS, 2018, 6 :26241-26253
[3]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[4]  
Chen DM, 2018, INT CONF CONTR AUTO, P303, DOI 10.1109/ICCAIS.2018.8570702
[5]   Fault Diagnosis of High-Speed Train Bogie Based on Capsule Network [J].
Chen, Lingling ;
Qin, Na ;
Dai, Xi ;
Huang, Deqing .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (09) :6203-6211
[6]  
CWRU, 2020, BEAR DAT
[7]   Towards Diverse and Natural Image Descriptions via a Conditional GAN [J].
Dai, Bo ;
Fidler, Sanja ;
Urtasun, Raquel ;
Lin, Dahua .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2989-2998
[8]   Energy-Fluctuated Multiscale Feature Learning With Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis [J].
Ding, Xiaoxi ;
He, Qingbo .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (08) :1926-1935
[9]   Intelligent Condition-Based Monitoring of Rotary Machines With Few Samples [J].
Dixit, Sonal ;
Verma, Nishchal K. .
IEEE SENSORS JOURNAL, 2020, 20 (23) :14337-14346
[10]  
Finn C, 2017, PR MACH LEARN RES, V70