Quantum cryptography without public announcement of bases

被引:91
作者
Hwang, WY [1 ]
Koh, IG
Han, YD
机构
[1] Seoul Natl Univ, Dept Phys Educ, Seoul, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[3] Woosuk Univ, Dept Phys, Cheonbuk, South Korea
关键词
D O I
10.1016/S0375-9601(98)00358-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a simple variation of the basic ideas of the BB84 quantum cryptographic scheme leading to a method of key expansion. A secure random sequence (the bases sequence) determines the encoding bases in a proposed scheme. Against incoherent attacks by Eve, using the bases sequence repeatedly is proven to be safe by quantum mechanical laws. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 22 条
[11]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[12]   CRYPTOGRAPHY - BEATING THE CODE BREAKERS [J].
EKERT, A .
NATURE, 1992, 358 (6381) :14-15
[13]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[14]   Optimal eavesdropping in quantum cryptography .1. Information bound and optimal strategy [J].
Fuchs, CA ;
Gisin, N ;
Griffiths, RB ;
Niu, CS ;
Peres, A .
PHYSICAL REVIEW A, 1997, 56 (02) :1163-1172
[15]   Quantum cloning, eavesdropping and Bell's inequality [J].
Gisin, N ;
Huttner, B .
PHYSICS LETTERS A, 1997, 228 (1-2) :13-21
[16]   Unambiguous quantum measurement of nonorthogonal states [J].
Huttner, B ;
Muller, A ;
Gautier, JD ;
Zbinden, H ;
Gisin, N .
PHYSICAL REVIEW A, 1996, 54 (05) :3783-3789
[17]   INFORMATION GAIN IN QUANTUM EAVESDROPPING [J].
HUTTNER, B ;
EKERT, AK .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2455-2466
[18]  
LO HK, QUANTPH9511025
[19]  
LO HK, QUANTPH9803007
[20]  
Selleri F., 1988, QUANTUM MECH VERSUS