Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach

被引:94
作者
Opalka, Natacha [1 ]
Brown, Jesse [4 ]
Lane, William J. [5 ]
Twist, Kelly-Anne F. [1 ]
Landick, Robert [2 ,3 ]
Asturias, Francisco J. [4 ]
Darst, Seth A. [1 ]
机构
[1] Rockefeller Univ, New York, NY 10021 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA
[3] Univ Wisconsin, Dept Bacteriol, Madison, WI 53705 USA
[4] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[5] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
BETA-SUBUNIT; TRANSCRIPTION INITIATION; SELENOMETHIONYL PROTEINS; CRYSTAL-STRUCTURE; TRIGGER LOOP; DOMAIN; HOLOENZYME; ELONGATION; RESOLUTION; GENE;
D O I
10.1371/journal.pbio.1000483
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program.
引用
收藏
页数:16
相关论文
共 70 条
[1]   Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions [J].
Artsimovitch, I ;
Svetlov, V ;
Murakami, KS ;
Landick, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :12344-12355
[2]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[3]   A ratchet mechanism of transcription elongation and its control [J].
Bar-Nahum, G ;
Epshtein, V ;
Ruckenstein, AE ;
Rafikov, R ;
Mustaev, A ;
Nudler, E .
CELL, 2005, 120 (02) :183-193
[4]  
Basokur A.T., 1998, Journal of the Balkan Geophysical Society, V1, P14
[5]  
BORUKHOV S, 1991, J BIOL CHEM, V266, P23921
[6]   Organization of an Activator-Bound RNA Polymerase Holoenzyme [J].
Bose, Daniel ;
Pape, Tillmann ;
Burrows, Patricia C. ;
Rappas, Mathieu ;
Wigneshweraraj, Siva R. ;
Buck, Martin ;
Zhang, Xiaodong .
MOLECULAR CELL, 2008, 32 (03) :337-346
[7]   PFAAT version 2.0: A tool for editing, annotating, and analyzing multiple sequence alignments [J].
Caffrey, Daniel R. ;
Dana, Paul H. ;
Mathur, Vidhya ;
Ocano, Marco ;
Hong, Eun-Jong ;
Wang, Yaoyu E. ;
Somaroo, Shyamal ;
Caffrey, Brian E. ;
Potluri, Shobha ;
Huang, Enoch S. .
BMC BIOINFORMATICS, 2007, 8 (1)
[8]   The anti-σ factor SpoIIAB forms a 2:1 complex with σF, contacting multiple conserved regions of the σ factor [J].
Campbell, EA ;
Darst, SA .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (01) :17-28
[9]   Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase β′ subunit [J].
Chlenov, M ;
Masuda, S ;
Murakami, KS ;
Nikiforov, V ;
Darst, SA ;
Mustaev, A .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (01) :138-154
[10]   Structure of yeast RNA polymerase II in solution: Implications for enzyme regulation and interaction with promoter DNA [J].
Craighead, JL ;
Chang, WH ;
Asturias, FJ .
STRUCTURE, 2002, 10 (08) :1117-1125