How Stable Are 2H-MoS2 Edges under Hydrogen Evolution Reaction Conditions?

被引:39
作者
Abidi, Nawras [1 ]
Bonduelle-Skrzypczak, Audrey [2 ]
Steinmann, Stephan N. [1 ]
机构
[1] Univ Lyon, ENS Lyon, CNRS, Lab Chim,UMR 5182, F-69342 Lyon, France
[2] IFP Energies Nouvelles, F-69360 Solaize, France
关键词
ATOMIC-SCALE STRUCTURE; AB-INITIO; LAYER MOS2; MOLYBDENUM SULFIDES; CATALYTIC-ACTIVITY; SITES; ELECTRODE; MECHANISM; HYDRODESULFURIZATION; ADSORPTION;
D O I
10.1021/acs.jpcc.1c04492
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal dichalcogenides (TMDs), especially MoS2, have emerged as a promising class of electrocatalysts for the production of H-2 via the hydrogen evolution reaction (HER) under acidic conditions. The edges of MoS2 are known for their HER activity, but their precise atomistic nature and stability under HER conditions are not yet known. In contrast to other typical uses of MoS2 as a catalyst, under the HER, there is no external source of sulfur. Therefore, the sulfidation of the edges can only decrease under operating conditions and the thermodynamics of the process are somewhat ill-defined. Our results suggest that the 50%S S-edge may be active for the HER via the Volmer-Tafel mechanism and is, despite a high H coverage, stable with respect to H2S release. At the 50% S Mo-edge, the adsorbed hydrogen opens the way for H2S release, leading to the 0%S Moedge, which was previously investigated and found to be HER-active. The HER being a water-based process, we also considered the effect of the presence of H2O and the in situ formation of OH. For the 50%S Mo-edge, H2O is only very weakly adsorbed and OH formation is unfavorable. Nevertheless, OH assists the loss of sulfur coverage, leading to OH-based HER-active sites. In contrast, OH is strongly adsorbed on the 50%S S-edge. By explicitly considering the electrochemical potential using grand-canonical density functional theory, we unveil that the Volmer-Heyrovsky mechanism on sulfur sites is still accessible in the presence of surface OH at the 50%S S-edge. However, the 50%S S-edge is found to be mildly unstable with respect to H2S in the presence of water/OH. Hence, we suggest that the 50%S S-edge evolves over time toward a 0%S S-edge, covered by surface OH that will block permanently the active sites.
引用
收藏
页码:17058 / 17067
页数:10
相关论文
共 73 条
[1]   Atomistic modeling of electrocatalysis: Are we there yet? [J].
Abidi, Nawras ;
Lim, Kang Rui Garrick ;
Seh, Zhi Wei ;
Steinmann, Stephan N. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (03)
[2]   Revisiting the Active Sites at the MoS2/H2O Interface via Grand-Canonical DFT: The Role of Water Dissociation [J].
Abidi, Nawras ;
Bonduelle-Skrzypczak, Audrey ;
Steinmann, Stephan N. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) :31401-31410
[3]   Nanopolygons of Monolayer MS2: Best Morphology and Size for HER Catalysis [J].
An, Yu-Rong ;
Fan, Xiao-Li ;
Luo, Zhi-Fen ;
Lau, Woon-Ming .
NANO LETTERS, 2017, 17 (01) :368-376
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Atomic and electronic structure of MoS2 nanoparticles -: art. no. 085410 [J].
Bollinger, MV ;
Jacobsen, KW ;
Norskov, JK .
PHYSICAL REVIEW B, 2003, 67 (08)
[6]   Hydrogen evolution on nano-particulate transition metal sulfides [J].
Bonde, Jacob ;
Moses, Poul G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
FARADAY DISCUSSIONS, 2008, 140 :219-231
[7]   In Situ Detection of Active Edge Sites in Single-Layer MoS2 Catalysts [J].
Bruix, Albert ;
Fuchtbauer, Henrik Gobel ;
Tuxen, Anders K. ;
Walton, Alexander S. ;
Andersen, Mie ;
Porsgaard, Soren ;
Besenbacher, Flemming ;
Hammer, Bjork ;
Lauritsen, Jeppe V. .
ACS NANO, 2015, 9 (09) :9322-9330
[8]   DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts [J].
Byskov, LS ;
Norskov, JK ;
Clausen, BS ;
Topsoe, H .
JOURNAL OF CATALYSIS, 1999, 187 (01) :109-122
[9]   Role of Chemical Potential in Flake Shape and Edge Properties of Mono layer MoS2 [J].
Cao, Dan ;
Shen, Tao ;
Liang, Pei ;
Chen, Xiaoshuang ;
Shu, Haibo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (08) :4294-4301
[10]   Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma [J].
Cheng, Chia-Chin ;
Lu, Ang-Yu ;
Tseng, Chien-Chih ;
Yang, Xiulin ;
Hedhili, Mohamed Nejib ;
Chen, Min-Cheng ;
Wei, Kung-Hwa ;
Li, Lain-Jong .
NANO ENERGY, 2016, 30 :846-852