Indium metal-organic framework with catalytic sites coated conductive graphene for high-performance lithium-sulfur batteries

被引:16
|
作者
Jiao, Xuechao [1 ,2 ]
Deng, Teng [1 ]
Men, Xinliang [1 ]
Zuo, Yinze [2 ]
Wang, Juan [1 ]
机构
[1] Xian Univ Architecture & Technol, Xian Key Lab Clean Energy, Shaanxi Key Lab Nanomat & Nanotechnol, Xian 710055, Shaanxi, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
关键词
Indium metal-organic frameworks; Catalytic effect; Reduced graphene oxide; Li-S batteries; CATHODE; MOF; POLYSULFIDES; BINDING; SOC;
D O I
10.1016/j.ceramint.2022.02.225
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metal-organic frameworks (MOFs) with abundant active sites and stable frame structures have great advantages for inhibiting the "shuttle effect" and alleviating volume expansion in lithium-sulfur (Li-S) batteries. However, their inherent poor conductivity hinders their application in Li-S batteries. Herein, with isophthalic acid (IPA) as the organic ligand and indium ions as the central metal, a tetrahedral cubic indium MOF (In-IPA) was synthesized and employed for the first time as a sulfur host. Experimental results suggest that In-IPA has a good catalytic effect on the conversion of polysulfides. Furthermore, three-dimensional In-IPA was coated with reduced graphene oxide (rGO) by the hydrothermal method (In-IPA@rGO). The interlaced rGO network not only significantly enhances the conductivity of In-IPA but also improves the reduction of kinetic reactions and promotes electron transport. Finally, In-IPA@rGO exhibited excellent electrochemical performance as a sulfur host. In particular, it exhibited a considerable initial capacity of 1672.3 mAh g-1 at 0.2 C and a reversible capacity of 898.7 mAh g-1 after 100 cycles. In addition, the initial capacity reached 1376.7 mAh g-1 and retained 519.8 mAh g-1 after 200 cycles at 0.5 C. This work proves that nontransition metal-organic frameworks prepared along with highly conductive rGO have synergistic advantages in Li-S battery applications.
引用
收藏
页码:16754 / 16763
页数:10
相关论文
共 50 条
  • [11] Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries
    Lai, Chao
    Wu, Zhenzhen
    Gu, Xingxing
    Wang, Chao
    Xi, Kai
    Kumar, R. Vasant
    Zhang, Shanqing
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (43) : 23885 - 23892
  • [12] Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries
    Xu, Guodong
    Zuo, Yuxiang
    Huang, Bing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 830 : 43 - 49
  • [13] Cationic Covalent-Organic Framework as Efficient Redox Motor for High-Performance Lithium-Sulfur Batteries
    Liu, Xiao-Fei
    Chen, Hong
    Wang, Rui
    Zang, Shuang-Quan
    Mak, Thomas C. W.
    SMALL, 2020, 16 (34)
  • [14] Metal-organic frameworks for lithium-sulfur batteries
    Zheng, Yan
    Zheng, Shasha
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) : 3469 - 3491
  • [15] Covalent organic framework wrapped by graphene oxide as an efficient sulfur host for high performance lithium-sulfur batteries
    Hu, Zongjie
    Yan, Gaojie
    Zhao, Jinchen
    Zhang, Xiaojie
    Feng, Yi
    Qu, Xiongwei
    Ben, Haijie
    Shi, Jingjing
    NANOTECHNOLOGY, 2022, 33 (22)
  • [16] Toward high performance Lithium-Sulfur batteries based on Metal-Organic Frameworks: Progress and prospects
    Xiao, Yingbo
    Qi, Chenze
    Yang, Dongpeng
    Ma, Dekun
    Huang, Shaoming
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 313
  • [17] Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries
    Wang, Shuai
    Huang, Fanyang
    Zhang, Zhengfeng
    Cai, Wenbin
    Jie, Yulin
    Wang, Shiyang
    Yan, Pengfei
    Jiao, Shuhong
    Cao, Ruiguo
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 336 - 343
  • [18] High Crystallinity 2D π-d Conjugated Conductive Metal-Organic Framework for Boosting Polysulfide Conversion in Lithium-Sulfur Batteries
    Guo, Tong
    Ding, Yichen
    Xu, Chang
    Bai, Wuxin
    Pan, Shencheng
    Liu, Mingliang
    Bi, Min
    Sun, Jingwen
    Ouyang, Xiaoping
    Wang, Xin
    Fu, Yongsheng
    Zhu, Junwu
    ADVANCED SCIENCE, 2023, 10 (27)
  • [19] Boosting sulfur catalytic kinetics by defect engineering of vanadium disulfide for high-performance lithium-sulfur batteries
    Liu, Guo
    Zeng, Qi
    Fan, Ziye
    Tian, Shuhao
    Li, Xijuan
    Lv, Xueliang
    Zhang, Wenjian
    Tao, Kun
    Xie, Erqing
    Zhang, Zhenxing
    CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [20] Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries
    Jiang, Guangshen
    Xu, Fei
    Yang, Shuhao
    Wu, Jianping
    Wei, Bingqing
    Wang, Hongqiang
    JOURNAL OF POWER SOURCES, 2018, 395 : 77 - 84