An Improved Method on Reducing Measurement Noise Based on Hilbert-Huang Transform

被引:2
作者
Cheng, Jiulong [1 ]
Sun, Xiaoyun [2 ]
Lv, Dandan [2 ]
An, Guoqing [2 ]
Zou, D. H. Steve [3 ]
机构
[1] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
[2] Hebei Univ Sci& Technol, sch Elect Engn & Informat Sci, Shijiazhuang 050018, Peoples R China
[3] Dalhousie Univ, Halifax, NS, Canada
来源
2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3 | 2009年
基金
中国国家自然科学基金;
关键词
Hilbert-Huang transform; HHT method; cross-correlation method; IMF coefficients; EMPIRICAL MODE DECOMPOSITION;
D O I
10.1109/ICICISYS.2009.5358082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For nonstationary signal in rock bolts detecting, an effective denoise method based on Hilbert-Huang transform (HHT) is presented, cross-correlation for denoise signal is used to estimate the length of rock bolts At first, by empirical mode decomposition (EMD) algorithm, a sum of intrinsic mode functions (IMF) are got, and then, the IMF coefficients in useful signal dominative layer are proceeded using soft threshold method, those IMF coefficients are reconstructed, at last, cross-correlation is used to estimate the length Compared with the traditional denoise method, the above method is better to remove measurement noise and estimate the length
引用
收藏
页码:627 / +
页数:2
相关论文
共 50 条
[21]   Research on improved modal parameter identification method using Hilbert-Huang transform [J].
Zhang, Mingjin ;
Chen, Hongyu ;
Yan, Tingyuan ;
Sun, Hao ;
Wu, Lianhuo .
MEASUREMENT & CONTROL, 2023, 56 (9-10) :1637-1648
[22]   The Detection of Low Frequency Oscillation Based on the Hilbert-Huang Transform Method [J].
Li, Kuan ;
Tian, Junqiang ;
Li, Congcong ;
Liu, Meng ;
Yang, Chao ;
Zhang, Guohui .
2018 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED), 2018, :1376-1379
[23]   Nonlinearity of abnormal waves by the Hilbert-Huang Transform method [J].
Veltcheva, Albena ;
Guedes Soares, C. .
OCEAN ENGINEERING, 2016, 115 :30-38
[24]   Sleep Stage Classification based on EEG Hilbert-Huang Transform [J].
Yi Li ;
Fan Yingle ;
Li Gu ;
Tong Qinye .
ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, :3667-+
[25]   Blasting Vibration Signal Analysis based on Hilbert-Huang Transform [J].
Li Dong ;
Fang Xiang ;
Liu Hao-quan ;
Guo Tao ;
Wu Guang-hua .
ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 :2279-2285
[26]   Magnetotelluric Response Function Estimation Based on Hilbert-Huang Transform [J].
Cai, Jian-hua .
PURE AND APPLIED GEOPHYSICS, 2013, 170 (11) :1899-1911
[27]   HILBERT-HUANG TRANSFORM BASED HIERARCHICAL CLUSTERING FOR EEG DENOISING [J].
Mert, Ahmet ;
Akan, Aydin .
2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
[28]   Adaptive speech enhancement algorithm based on Hilbert-Huang transform [J].
Jiang N. ;
Li J. .
Ingenierie des Systemes d'Information, 2019, 24 (01) :57-60
[29]   A Hilbert-Huang transform method for scattering identification in LIGO [J].
Valdes, Guillermo ;
O'Reilly, Brian ;
Diaz, Mario .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (23)
[30]   Improved Noise Resistance Processing Electrocardiosignals Adaptive Noise CEEMDAN as a Method of Solving the Basic Problems of the Application of Hilbert-Huang Transform [J].
Altay, Yeldos A. ;
Kremlev, Artem S. .
PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, :621-623