The existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness

被引:41
作者
Anguraj, A. [1 ]
Wu, Shujin [2 ]
Vinodkumar, A. [1 ]
机构
[1] PSG Coll Arts & Sci, Dept Math, Coimbatore 641014, Tamil Nadu, India
[2] E China Normal Univ, Sch Finance & Stat, Dept Stat & Actuarial Sci, Shanghai 200241, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Mild solutions; Semilinear differential equation; Random impulse; Existence; Exponential stability; Leray-Schauder alternative fixed point theorem; FIXED-POINTS; SYSTEMS;
D O I
10.1016/j.na.2010.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence and exponential stability of mild solutions of semilinear differential equations with random impulses are studied under non-uniqueness in a real separable Hilbert space. The results are obtained by using the Leray-Schauder alternative fixed point theorem. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 14 条
[1]   Existence results for an impulsive neutral functional differential equation with state-dependent delay [J].
Anguraj, A. ;
Arjunan, M. Mallika ;
Hernandez, Eduardo M. .
APPLICABLE ANALYSIS, 2007, 86 (07) :861-872
[2]  
[Anonymous], DYNAM CONT DIS SER A
[3]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[4]  
Benchohra M, 2006, J APPL MATH STOCH AN, V2006, P1
[5]   Fixed points and stability of an integral equation: Nonuniqueness [J].
Burton, TA ;
Zhang, B .
APPLIED MATHEMATICS LETTERS, 2004, 17 (07) :839-846
[6]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[7]   Existence of solutions for impulsive partial neutral functional differential equations [J].
Hernandez M, Eduardo ;
Rabello, Marco ;
Henriquez, Hernan R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) :1135-1158
[8]  
Lakshmikantham V., 1989, World scientific, V6
[9]   Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays [J].
Luo, Jiaowan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :753-760
[10]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]