Periodic interpolation and wavelets on sparse grids

被引:7
作者
Sprengel, F [1 ]
机构
[1] Univ Rostock, Fachbereich Math, D-18051 Rostock, Germany
关键词
wavelets; multivariate periodic interpolation; Boolean sums; sparse grids;
D O I
10.1023/A:1012041629709
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nested spaces of multivariate periodic functions forming a non-stationary multiresolution; analysis are investigated. The scaling functions of these spaces are fundamental polynomials of Lagrange interpolation on a sparse grid. The approach based on Boolean sums leads to sample and wavelet spaces of significantly lower dimension and good approximation order. The algorithms for complete decomposition and reconstruction are of simple structure and low complexity.
引用
收藏
页码:147 / 169
页数:23
相关论文
共 24 条
[1]  
BASZENSKI G, 1989, INT S NUM M, V90, P15
[2]  
BITTNER K, 1998, IN PRESS SIAM J SCI
[3]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[4]   ON TRIGONOMETRIC WAVELETS [J].
CHUI, CK ;
MHASKAR, HN .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :167-190
[5]  
DAUBECHIES I, 1992, CBMS NSF SERIES APPL
[6]  
Davis PJ., 1979, Circulant Matrices
[7]  
DELVOS FJ, 1989, PITMAN RES NOTES MAT
[8]   Hyperbolic wavelet approximation [J].
DeVore, RA ;
Konyagin, SV ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 1998, 14 (01) :1-26
[9]  
DEVORE RA, 1997, MAT ZAMETKI, V56, P36
[10]   ON ADDITIVE SCHWARZ PRECONDITIONERS FOR SPARSE GRID DISCRETIZATIONS [J].
GRIEBEL, M ;
OSWALD, P .
NUMERISCHE MATHEMATIK, 1994, 66 (04) :449-463