Solvability of fractional boundary value problem with p-Laplacian via critical point theory

被引:17
作者
Chen, Taiyong [1 ]
Liu, Wenbin [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional differential equation; p-Laplacian; boundary value problem; critical point theory; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1186/s13661-016-0583-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the fractional boundary value problem containing left and right fractional derivative operators and p-Laplacian. By using critical point theory we obtain some results on the existence of weak solutions of such a fractional boundary value problem.
引用
收藏
页数:12
相关论文
共 34 条
[21]  
Kosmatov N, 2010, ELECTRON J DIFFER EQ
[22]  
Leibenson L.S., 1983, Izv. Akad. Nauk SSSR, V9, P7
[23]   Infinitely many periodic solutions for ordinary p-Laplacian systems [J].
Li, Chun ;
Agarwal, Ravi P. ;
Tang, Chun-Lei .
ADVANCES IN NONLINEAR ANALYSIS, 2015, 4 (04) :251-261
[24]  
Lian H, 2007, THESIS
[25]   Fractional differentiation by neocortical pyramidal neurons [J].
Lundstrom, Brian N. ;
Higgs, Matthew H. ;
Spain, William J. ;
Fairhall, Adrienne L. .
NATURE NEUROSCIENCE, 2008, 11 (11) :1335-1342
[26]  
Mainardi F., 1997, Fractals and Fractional Calculus in Continuum Mechanics, P291, DOI DOI 10.1007/978-3-7091-2664-6_7
[27]  
Mawhin J., 1989, Applied Mathematical Sciences
[28]  
Pucci P., 2010, B UNIONE ITAL 9, V9, P543
[29]  
Rabinowitz PH, 1986, MINIMAX METHODS CRIT
[30]  
Radulescu VD, 2007, HBK DIFF EQUAT STATI, V4, P485, DOI 10.1016/S1874-5733(07)80010-6