Preparation of an efficient NiAuPd/graphene nanocatalyst via one-pot reaction

被引:2
作者
Ou, Baoli [1 ,2 ]
Chen, Meilong [1 ]
Guo, Yuanjun [1 ]
Bian, Shuai [1 ]
He, Cong [1 ]
Yan, Jianhui [1 ]
Liu, Gang [1 ]
Li, Duxin [2 ]
Yi, Shoujun [1 ]
机构
[1] Hunan Univ Sci & Technol, Hunan Prov Key Lab Controllable Preparat & Funct, Hunan Prov Key Def Lab High Temp Wear Resisting M, Key Lab Theoret Organ Chem & Funct Mol,Minist Edu, Xiangtan 411201, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
关键词
Hydrogen generation; Hydrogen energy; Graphene; FORMIC-ACID DECOMPOSITION; CATALYST;
D O I
10.1016/j.matlet.2017.07.067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The NiAuPd/G nanocatalyst was prepared by one-pot hydrothermal synthesis. The compositionalanalysis, structural characterization, morphology and performance of the resulting synthetic catalyst were done by Energy Dispersive X-ray Spectroscopy (EDX), X-ray diffraction (XRD) and Transmission electron microscope (TEM). In addition, catalytic activities of the NiAuPd/G catalyst was investigated. It is found that the NiAuPd/graphene exhibits a perfect crystal structure. The NiAuPd/graphene exhibits a high catalytic activity for the dehydrogenation of formic acid at room temperature and without additives. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 14 条
[1]   Formic Acid-Based Fischer-Tropsch Synthesis for Green Fuel Production from Wet Waste Biomass and Renewable Excess Energy [J].
Albert, Jakob ;
Jess, Andreas ;
Kern, Christoph ;
Poehlmann, Ferdinand ;
Glowienka, Kevin ;
Wasserscheid, Peter .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (09) :5078-5086
[2]   Hydrogen Storage Experiments for an Undergraduate Laboratory Course-Clean Energy: Hydrogen/Fuel Cells [J].
Bailey, Alla ;
Andrews, Lisa ;
Khot, Ameya ;
Rubin, Lea ;
Young, Jun ;
Allston, Thomas D. ;
Takacs, Gerald A. .
JOURNAL OF CHEMICAL EDUCATION, 2015, 92 (04) :688-692
[3]   Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst [J].
Bielinski, Elizabeth A. ;
Lagaditis, Paraskevi O. ;
Zhang, Yuanyuan ;
Mercado, Brandon Q. ;
Wuertele, Christian ;
Bernskoetter, Wesley H. ;
Hazari, Nilay ;
Schneider, Sven .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (29) :10234-10237
[4]   Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel [J].
Fu, Teng ;
Wang, Meng ;
Cai, Weimeng ;
Cui, Yuming ;
Gao, Fei ;
Peng, Luming ;
Chen, Wei ;
Ding, Weiping .
ACS CATALYSIS, 2014, 4 (08) :2536-2543
[5]   Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory study [J].
Herron, Jeffrey A. ;
Scaranto, Jessica ;
Ferrin, Peter ;
Li, Sha ;
Mavrikakis, Manos .
ACS CATALYSIS, 2014, 4 (12) :4434-4445
[6]   Materials for Hydrogen Storage: Past, Present, and Future [J].
Jena, Puru .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :206-211
[7]   Pd and Pd-Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition [J].
Mori, Kohsuke ;
Dojo, Masahiro ;
Yamashita, Hiromi .
ACS CATALYSIS, 2013, 3 (06) :1114-1119
[8]   Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature [J].
Ou, Baoli ;
Zhou, Zhihua ;
Liu, Qingquan ;
Liao, Bo ;
Yi, Shoujun ;
Ou, Yangjian ;
Zhang, Xin ;
Li, Duxin .
POLYMER CHEMISTRY, 2012, 3 (10) :2768-2775
[9]   High Pressure Behavior of Hydrogen Storage Material Guanidinium Borohydride [J].
Qi, Guangyu ;
Wang, Kai ;
Li, Xiaodong ;
Zou, Bo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (25) :13414-13420
[10]   Thermodynamic Analysis of Hydrogen Generation from Methanol-Formic Acid-Steam Autothermal System [J].
Rui, Zebao ;
Ji, Hongbing .
ENERGY & FUELS, 2013, 27 (09) :5449-5458