Adversarial Machine Learning: A Comparative Study on Contemporary Intrusion Detection Datasets

被引:23
|
作者
Pacheco, Yulexis [1 ]
Sun, Weiqing [1 ]
机构
[1] Univ Toledo, Coll Engn, 2801 W Bancroft St, Toledo, OH 43606 USA
来源
ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY | 2021年
关键词
Adversarial Machine Learning; Deep Learning; Deep Neural Networks; Intrusion Detection Datasets;
D O I
10.5220/0010253501600171
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Studies have shown the vulnerability of machine learning algorithms against adversarial samples in image classification problems in deep neural networks. However, there is a need for performing comprehensive studies of adversarial machine learning in the intrusion detection domain, where current research has been mainly conducted on the widely available KDD'99 and NSL-KDD datasets. In this study, we evaluate the vulnerability of contemporary datasets (in particular, UNSW-NB15 and Bot-IoT datasets) that represent the modern network environment against popular adversarial deep learning attack methods, and assess various machine learning classifiers' robustness against the generated adversarial samples. Our study shows the feasibility of the attacks for both datasets where adversarial samples successfully decreased the overall detection performance.
引用
收藏
页码:160 / 171
页数:12
相关论文
共 50 条
  • [1] A Comparative Study on the Impact of Adversarial Machine Learning Attacks on Contemporary Intrusion Detection Datasets
    Pujari M.
    Pacheco Y.
    Cherukuri B.
    Sun W.
    SN Computer Science, 3 (5)
  • [2] Adversarial machine learning for network intrusion detection: A comparative study
    Jmila, Houda
    Ibn Khedher, Mohamed
    COMPUTER NETWORKS, 2022, 214
  • [3] Adversarial machine learning in Network Intrusion Detection Systems
    Alhajjar, Elie
    Maxwell, Paul
    Bastian, Nathaniel
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [4] Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey
    He, Ke
    Kim, Dan Dongseong
    Asghar, Muhammad Rizwan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (01): : 538 - 566
  • [5] Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
    Ferrag, Mohamed Amine
    Maglaras, Leandros
    Moschoyiannis, Sotiris
    Janicke, Helge
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 50
  • [6] Adversarial Machine Learning Attacks against Intrusion Detection Systems: A Survey on Strategies and Defense
    Alotaibi, Afnan
    Rassam, Murad A.
    FUTURE INTERNET, 2023, 15 (02)
  • [7] Machine learning for encrypted malicious traffic detection: Approaches, datasets and comparative study
    Wang, Zihao
    Fok, Kar Wai
    Thing, Vrizlynn L. L.
    COMPUTERS & SECURITY, 2022, 113
  • [8] Adversarial Training Against Adversarial Attacks for Machine Learning-Based Intrusion Detection Systems
    Haroon, Muhammad Shahzad
    Ali, Husnain Mansoor
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3513 - 3527
  • [9] Model Evasion Attack on Intrusion Detection Systems using Adversarial Machine Learning
    Ayub, Md Ahsan
    Johnson, William A.
    Talbert, Douglas A.
    Siraj, Ambareen
    2020 54TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2020, : 324 - 329
  • [10] Deep Learning vs. Machine Learning for Intrusion Detection in Computer Networks: A Comparative Study
    Ali, Md Liakat
    Thakur, Kutub
    Schmeelk, Suzanna
    Debello, Joan
    Dragos, Denise
    APPLIED SCIENCES-BASEL, 2025, 15 (04):