N, O-Codoped Carbon Nanosheet Array Enabling Stable Lithium Metal Anode

被引:67
作者
Xu, Zhixiao [1 ]
Xu, Luyao [1 ]
Xu, Zhixin [2 ]
Deng, Zhiping [1 ]
Wang, Xiaolei [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, 9211-116 St NW, Edmonton, AB T6G 1H9, Canada
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
dendrite-free lithium metal; N; O-codoped carbon; polyimide; polymer interfacial self-assembly; vertical carbon nanosheet array; HIGH-ENERGY; GRAPHENE; LAYER; SUPERSTRUCTURES; SEPARATOR; SURFACE;
D O I
10.1002/adfm.202102354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal anodes hold great potential for next-generation high-energy batteries. However, the low Coulombic efficiency (CE) and dendritic growth during lithium metal plating/stripping cause short cycle life and deter its practical application. Herein, nitrogen, oxygen-codoped vertical carbon nanosheet arrays are constructed on Cu foil (NOCA@Cu) as the efficient host to improve CE and suppress Li dendrites through polymer interfacial self-assembly and morphology-preserved pyrolysis. Benefitting from numerous vertical porous channels with abundant lithiophilic heteroatom dopants, 3D structured NOCA@Cu host can guide Li nucleation and growth in a controlled manner, leading to dendrite-free Li deposition with high CE and long life cycles in both carbonate electrolyte and ether electrolyte, surpassing horizontal carbon-coated Cu and pure Cu hosts. Finite element simulation further reveals the structural function of vertical carbon arrays as not only directing Li plating in the nanoarray-constructed confined space but also homogenizing the distribution of ion concentration and electrical field throughout the 3D electrode. To demonstrate the practical application of lithiated NOCA@Cu anode, it is coupled with a commercial LiFePO4 cathode, delivering high capacity and long-cycle stability with nearly 100% CE. The cost-effective, scalable, and efficient features render NOCA@Cu a promising Li host toward practical lithium metal batteries.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   3D Printed High-Performance Lithium Metal Microbatteries Enabled by Nanocellulose [J].
Cao, Daxian ;
Xing, Yingjie ;
Tantratian, Karnpiwat ;
Wang, Xiao ;
Ma, Yi ;
Mukhopadhyay, Alolika ;
Cheng, Zheng ;
Zhang, Qing ;
Jiao, Yucong ;
Chen, Lei ;
Zhu, Hongli .
ADVANCED MATERIALS, 2019, 31 (14)
[3]   Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes [J].
Chen, Xiang ;
Chen, Xiao-Ru ;
Hou, Ting-Zheng ;
Li, Bo-Quan ;
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhang, Qiang .
SCIENCE ADVANCES, 2019, 5 (02)
[4]   Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward High-Performance Li-S Batteries [J].
Chen, Yazhou ;
Elangovan, Ayyappan ;
Zeng, Danli ;
Zhang, Yunfeng ;
Ke, Hanzhong ;
Li, Jun ;
Sun, Yubao ;
Cheng, Hansong .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
[5]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[6]   Key Issues Hindering a Practical Lithium-Metal Anode [J].
Fang, Chengcheng ;
Wang, Xuefeng ;
Meng, Ying Shirley .
TRENDS IN CHEMISTRY, 2019, 1 (02) :152-158
[7]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[8]   Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries [J].
Hagos, Tesfaye Teka ;
Thirumalraj, Balamurugan ;
Huang, Chen-Jui ;
Abrha, Ljalem Hadush ;
Hagos, Teklay Mezgebe ;
Berhe, Gebregziabher Brhane ;
Bezabh, Hailemariam Kassa ;
Cherng, Jim ;
Chiu, Shuo-Feng ;
Su, Wei-Nien ;
Hwang, Bing-Joe .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) :9955-9963
[9]   Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries [J].
Jin, Song ;
Xin, Sen ;
Wang, Linjun ;
Du, Zhenzhen ;
Cao, Lina ;
Chen, Jiafeng ;
Kong, Xianghua ;
Gong, Ming ;
Lu, Junling ;
Zhu, Yanwu ;
Ji, Hengxing ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2016, 28 (41) :9094-+
[10]   Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) [J].
Jung, Eui Hyuk ;
Jeon, Nam Joong ;
Park, Eun Young ;
Moon, Chan Su ;
Shin, Tae Joo ;
Yang, Tae-Youl ;
Noh, Jun Hong ;
Seo, Jangwon .
NATURE, 2019, 567 (7749) :511-+