Regularized Integrals on Riemann Surfaces and Modular Forms

被引:10
作者
Li, Si [1 ]
Zhou, Jie [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MIRROR SYMMETRY; RENORMALIZATION; CURVES;
D O I
10.1007/s00220-021-04232-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a simple procedure to integrate differential forms with arbitrary holomorphic poles on Riemann surfaces. It gives rise to an intrinsic regularization of such singular integrals in terms of the underlying conformal geometry. Applied to products of Riemann surfaces, this regularization scheme establishes an analytic theory for integrals over configuration spaces, including Feynman graph integrals arising from two dimensional chiral quantum field theories. Specializing to elliptic curves, we show such regularized graph integrals are almost-holomorphic modular forms that geometrically provide modular completions of the corresponding ordered A-cycle integrals.
引用
收藏
页码:1403 / 1474
页数:72
相关论文
共 49 条
[1]  
[Anonymous], ARXIV12084074HEPTH
[2]  
[Anonymous], 1969, Math. Notes
[3]  
[Anonymous], ARXIVHEPTH9403055
[4]  
AXELROD S, 1994, J DIFFER GEOM, V39, P173, DOI 10.4310/jdg/1214454681
[5]  
Benini M., ARXIV200801829HEPTH
[6]   KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :311-427
[7]   The character of the infinite wedge representation [J].
Bloch, S ;
Okounkov, A .
ADVANCES IN MATHEMATICS, 2000, 149 (01) :1-60
[8]  
Bloch S., ARXIV150900361MATHAG
[9]  
Bloch S., 2010, CLAY MATH P, V9, P137
[10]   Motives associated to graphs [J].
Bloch, Spencer .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :165-196