Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials

被引:68
作者
Ma, Chunping [1 ]
Chang, Yilong [2 ]
Wu, Shuai [2 ]
Zhao, Ruike Renee [2 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
magnetic soft materials; mechanical metamaterials; deep learning; ResNet; optimization; DETECTION ALGORITHM;
D O I
10.1021/acsami.2c09052
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metamaterials are artificially structured materials with unusual properties, such as negative Poisson's ratio, acoustic band gap, and energy absorption. However, metamaterials made of conventional materials lack tunability after fabrication. Thus, active metamaterials using magneto-mechanical actuation for untethered, fast, and reversible shape configurations are developed to tune the mechanical response and property of metamaterials. Although the magneto-mechanical metamaterials have shown promising capabilities in tunable mechanical stiffness, acoustic band gaps, and electromagnetic behaviors, the existing demonstrations rely on the forward design methods based on experience or simulations, by which the metamaterial properties are revealed only after the design. Considering the massive design space due to the material and structural programmability, a robust inverse design strategy is desired to create the magneto-mechanical metamaterials with preferred tunable properties. In this work, we develop an inverse design framework where a deep residual network replaces the conventional finite-element analysis for acceleration, realizing metamaterials with predetermined global strains under magnetic actuations. For validation, a direct-ink-writing printing method of the magnetic soft materials is adopted to fabricate the designed complex metamaterials. The deep learning-accelerated design framework opens avenues for the designs of magneto-mechanical metamaterials and other active metamaterials with target mechanical, acoustic, thermal, and electromagnetic properties.
引用
收藏
页码:33892 / 33902
页数:11
相关论文
共 52 条
[1]  
Abadi Martin, 2016, arXiv
[2]   Deep learning for plasticity and thermo-viscoplasticity [J].
Abueidda, Diab W. ;
Koric, Seid ;
Sobh, Nahil A. ;
Sehitoglu, Huseyin .
INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 136
[3]   Prediction and optimization of mechanical properties of composites using convolutional neural networks [J].
Abueidda, Diab W. ;
Almasri, Mohammad ;
Ammourah, Rami ;
Ravaioli, Umberto ;
Jasiuk, Iwona M. ;
Sobh, Nahil A. .
COMPOSITE STRUCTURES, 2019, 227
[4]   Reprogrammable shape morphing of magnetic soft machines [J].
Alapan, Yunus ;
Karacakol, Alp C. ;
Guzelhan, Seyda N. ;
Isik, Irem ;
Sitti, Metin .
SCIENCE ADVANCES, 2020, 6 (38)
[5]   Shape-shifting structured lattices via multimaterial 4D printing [J].
Boley, J. William ;
van Rees, Wim M. ;
Lissandrello, Charles ;
Horenstein, Mark N. ;
Truby, Ryan L. ;
Kotikian, Arda ;
Lewis, Jennifer A. ;
Mahadevan, L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (42) :20856-20862
[6]   Synthesis design of artificial magnetic metamaterials using a genetic algorithm [J].
Chen, P. Y. ;
Chen, C. H. ;
Wang, H. ;
Tsai, J. H. ;
Ni, W. X. .
OPTICS EXPRESS, 2008, 16 (17) :12806-12818
[7]   Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control [J].
Chen, Yanyu ;
Li, Tiantian ;
Scarpa, Fabrizio ;
Wang, Lifeng .
PHYSICAL REVIEW APPLIED, 2017, 7 (02)
[8]   Nanomagnetic encoding of shape-morphing micromachines [J].
Cui, Jizhai ;
Huang, Tian-Yun ;
Luo, Zhaochu ;
Testa, Paolo ;
Gu, Hongri ;
Chen, Xiang-Zhong ;
Nelson, Bradley J. ;
Heyderman, Laura J. .
NATURE, 2019, 575 (7781) :164-+
[9]   Deterministic Self-Morphing of Soft-Stiff Hybridized Polymeric Films for Acoustic Metamaterials [J].
Deng, Heng ;
Xu, Xianchen ;
Zhang, Cheng ;
Su, Jheng-Wun ;
Huang, Guoliang ;
Lin, Jian .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) :13378-13385
[10]   Direct 4D printing via active composite materials [J].
Ding, Zhen ;
Yuan, Chao ;
Peng, Xirui ;
Wang, Tiejun ;
Qi, H. Jerry ;
Dunn, Martin L. .
SCIENCE ADVANCES, 2017, 3 (04)