Generalized Lie-Type Derivations of Alternative Algebras

被引:0
|
作者
Ferreira, B. L. M. [1 ]
de Moraes, G. C. [2 ]
机构
[1] Fed Univ Technol, 800 Prof Laura Pacheco Bastos Ave, BR-85053510 Guarapuava, Brazil
[2] Fed Univ ABC, 5001 Estados Ave, BR-09210580 Santo Andre, SP, Brazil
关键词
alternative algebra; generalized Lie derivation; TRIPLE ASTERISK-PRODUCT; UNITAL ALGEBRAS; MAPS; MAPPINGS;
D O I
10.3103/S1066369X2109005X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the result: "If F : A -> A is a generalized Lie n-derivation associated with a Lie n-derivation D, then a linear map H = F - D satisfies H(p(n)(x(1), x(2),..., x(n))) = p(n)(H(x(1)), x(2),..., x(n)) for all x(1), x(2),..., x(n) is an element of A". Thus, if A is a unital alternative algebra with a nontrivial idempotent e1 satisfying certain conditions, then a generalized Lie-type derivation F : A -> A is of the form F(x) = lambda x+Xi(x) for all x is an element of A, where lambda is an element of Z(A) and Xi : A -> A is a Lie-type derivation.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [31] On generalized Lie derivations
    Bennis, Driss
    Vishki, Hamid Reza Ebrahimi
    Fahid, Brahim
    Bahmani, Mohammad Ali
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 423 - 435
  • [32] On generalized Lie derivations
    Driss Bennis
    Hamid Reza Ebrahimi Vishki
    Brahim Fahid
    Mohammad Ali Bahmani
    Afrika Matematika, 2020, 31 : 423 - 435
  • [33] Multiplicative *-Lie type higher derivations of standard operator algebras
    Wani, Bilal Ahmad
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 3777 - 3797
  • [34] NONLINEAR *-JORDAN-TYPE DERIVATIONS ON ALTERNATIVE *-ALGEBRAS
    Andrade, A. J. O.
    Moraes, G. C.
    Ferreira, R. N.
    Ferreira, B. L. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01): : 125 - 137
  • [35] Nonlinear mixed ∗-Jordan type derivations on alternative ∗-algebras
    Pierin, Tanise Carnieri
    Ferreira, Ruth Nascimento
    Borges, Fernando
    Ferreira, Bruno Leonardo Macedo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (02)
  • [36] ON APPROXIMATE GENERALIZED LIE DERIVATIONS
    Brzdek, Janusz
    Fosner, Ajda
    GLASNIK MATEMATICKI, 2015, 50 (01) : 77 - 99
  • [37] Nonlinear *-Lie derivations on unital algebras
    Jabeen, Aisha
    Ashraf, Mohammad
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 731 - 746
  • [38] Lie n-derivations of unital algebras with idempotents
    Wang, Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 512 - 525
  • [39] Local Lie derivations of nest algebras
    Chen, Lin
    Lu, Fangyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 62 - 72
  • [40] Nonlinear Lie derivations of triangular algebras
    Yu, Weiyan
    Zhang, Jianhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2953 - 2960