Generalized Lie-Type Derivations of Alternative Algebras

被引:0
|
作者
Ferreira, B. L. M. [1 ]
de Moraes, G. C. [2 ]
机构
[1] Fed Univ Technol, 800 Prof Laura Pacheco Bastos Ave, BR-85053510 Guarapuava, Brazil
[2] Fed Univ ABC, 5001 Estados Ave, BR-09210580 Santo Andre, SP, Brazil
关键词
alternative algebra; generalized Lie derivation; TRIPLE ASTERISK-PRODUCT; UNITAL ALGEBRAS; MAPS; MAPPINGS;
D O I
10.3103/S1066369X2109005X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the result: "If F : A -> A is a generalized Lie n-derivation associated with a Lie n-derivation D, then a linear map H = F - D satisfies H(p(n)(x(1), x(2),..., x(n))) = p(n)(H(x(1)), x(2),..., x(n)) for all x(1), x(2),..., x(n) is an element of A". Thus, if A is a unital alternative algebra with a nontrivial idempotent e1 satisfying certain conditions, then a generalized Lie-type derivation F : A -> A is of the form F(x) = lambda x+Xi(x) for all x is an element of A, where lambda is an element of Z(A) and Xi : A -> A is a Lie-type derivation.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [1] Generalized Lie-Type Derivations of Alternative Algebras
    G. C. Ferreira
    Russian Mathematics, 2021, 65 : 33 - 40
  • [2] Multiplicative Lie-type derivations on alternative rings
    Macedo Ferreira, Bruno Leonardo
    Guzzo, Henrique, Jr.
    Wei, Feng
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5396 - 5411
  • [3] Multiplicative Lie-type derivations on standard operator algebras
    Ashraf, Mohammad
    Akhter, Md Shamim
    Ansari, Mohammad Afajal
    Akhtar, Mohd Shuaib
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (05) : 659 - 669
  • [4] LIE-TYPE DERIVATIONS OF FINITARY INCIDENCE ALGEBRAS
    Khrypchenko, Mykola
    Wei, Feng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (01) : 163 - 175
  • [5] NONLINEAR BI-SKEW LIE-TYPE DERIVATIONS ON *-ALGEBRAS
    Zhang, Jingyi
    Li, Changjing
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (02) : 647 - 659
  • [6] NONLINEAR *-LIE-TYPE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Lin, W. -H.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 112 - 131
  • [7] NONLINEAR LIE-TYPE DERIVATIONS OF VON NEUMANN ALGEBRAS AND RELATED TOPICS
    Fosner, Ajda
    Wei, Feng
    Xiao, Zhankui
    COLLOQUIUM MATHEMATICUM, 2013, 132 (01) : 53 - 71
  • [8] Characterizations of Lie-type derivations of triangular algebras with local actions
    Akhtar, Mohd Shuaib
    Ashraf, Mohammad
    Ansari, Mohammad Afajal
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 559 - 574
  • [9] Generalized Lie derivations on triangular algebras
    Benkovic, Dominik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (06) : 1532 - 1544
  • [10] LIE-TYPE DERIVATIONS OF NEST ALGEBRAS ON BANACH SPACES AND RELATED TOPICS
    Wei, Feng
    Zhang, Yuhao
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 112 (03) : 391 - 430