On cohomology of filiform Lie superalgebras

被引:4
作者
Yang, Yong [1 ]
Liu, Wende [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
关键词
Filiform Lie superalgebra; Betti number; Associative superalgebra; INFINITESIMAL DEFORMATIONS; ALGEBRAS;
D O I
10.1016/j.geomphys.2018.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose the ground field F is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalgebra. We also describe the associative superalgebra structures of the (divided power) cohomology for some low-dimensional filiform Lie superalgebras. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:212 / 234
页数:23
相关论文
共 17 条
  • [1] On the cohomology of a class of nilpotent Lie algebras
    Armstrong, GF
    Sigg, S
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 517 - 527
  • [2] Cohomology of Heisenberg Lie superalgebras
    Bai, Wei
    Liu, Wende
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [3] Some deformations of nilpotent Lie superalgebras
    Bordemann, M.
    Gomez, J. R.
    Khakimdjanov, Yu.
    Navarro, R. M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1391 - 1403
  • [4] Bordemann M., 1997, Acta Math. Univ. Com. LXVI, V2, P151
  • [5] DIVIDED POWER (CO)HOMOLOGY. PRESENTATIONS OF SIMPLE FINITE DIMENSIONAL MODULAR LIE SUPERALGEBRAS WITH CARTAN MATRIX
    Bouarroudj, Sofiane
    Grozman, Pavel
    Lebedev, Alexei
    Leites, Dimitry
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (01) : 237 - 278
  • [6] Cohomology of graded Lie algebras of maximal class
    Fialowski, A
    Millionschikov, D
    [J]. JOURNAL OF ALGEBRA, 2006, 296 (01) : 157 - 176
  • [7] On deformations of the filiform Lie superalgebra Ln,m
    Gilg, M
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) : 2099 - 2115
  • [8] Gilg M., 2001, Rev. Mat. Complut., V14, P463
  • [9] Infinitesimal deformations of the lie superalgebra Ln,m
    Gomez, J. R.
    Khakimdjanov, Yu.
    Navarro, R. M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (07) : 849 - 859
  • [10] Humphreys J.E., 1972, INTRO LIE ALGEBRAS R