Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: Synthesis and characterization

被引:76
作者
Hu, Xiuli [1 ,2 ]
Liu, Shi [1 ]
Chen, Xuesi [1 ]
Mo, Guojun [1 ,2 ]
Xie, Zhigang [1 ,2 ]
Jing, Xiabin [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
D O I
10.1021/bm701092j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-factide-co-9-phenyl-2,4,8, 10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) Of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)(2) as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure. It could self-assemble into micelles in aqueous solution with critical micelle concentration (CMC) in the magnitude of mg/L, which changed with the composition of the copolymer. After catalytic hydrogenation, copolymers with active hydroxyl groups were obtained. Adhesion and proliferation of Vero cells on the copolymer films showed that the synthesized copolymers were good biocompatible materials. In vitro degradation of the copolymer before and after deprotection was investigated in the presence of proteinase K. The free hydroxyl groups on the copolymers were capable of further modification with biotin. This new amphiphilic block copolymer has great potential for both drug encapsulation and conjugate because of its low CMC and the presence of active hydroxyl groups.
引用
收藏
页码:553 / 560
页数:8
相关论文
共 49 条
[1]   Synthesis and microstructural characterisation of copolymers of L-lactide and trimethylene carbonate prepared using the SmI2/Sm initiator system [J].
Agarwal, S ;
Puchner, M ;
Greiner, A ;
Wendorff, JH .
POLYMER INTERNATIONAL, 2005, 54 (10) :1422-1428
[2]   Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one [J].
Al-Azemi, TF ;
Bisht, KS .
MACROMOLECULES, 1999, 32 (20) :6536-6540
[3]   Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone [J].
Allen, C ;
Han, JN ;
Yu, YS ;
Maysinger, D ;
Eisenberg, A .
JOURNAL OF CONTROLLED RELEASE, 2000, 63 (03) :275-286
[4]   Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818 [J].
Allen, C ;
Yu, YS ;
Maysinger, D ;
Eisenberg, A .
BIOCONJUGATE CHEMISTRY, 1998, 9 (05) :564-572
[5]  
Allen C, 1999, STP PHARMA SCI, V9, P139
[6]   SYNTHESIS AND RGD PEPTIDE MODIFICATION OF A NEW BIODEGRADABLE COPOLYMER - POLY(LACTIC ACID-CO-LYSINE) [J].
BARRERA, DA ;
ZYLSTRA, E ;
LANSBURY, PT ;
LANGER, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (23) :11010-11011
[7]  
Benabdillah KM, 1999, MACROMOLECULES, V32, P8774
[8]   Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers [J].
Chen, Cheng ;
Yu, Chung Him ;
Cheng, Yin Chung ;
Yu, Peter H. F. ;
Cheung, Man Ken .
BIOMATERIALS, 2006, 27 (27) :4804-4814
[9]   Synthesis and characterization of novel biodegradable copolymers of 5-benzyloxy-1,3-dioxan-2-one and glycolide [J].
Cheng, SX ;
Miao, ZM ;
Wang, LS ;
Zhuo, RX .
MACROMOLECULAR RAPID COMMUNICATIONS, 2003, 24 (18) :1066-1069
[10]   Design strategies to improve soluble macromolecular delivery constructs [J].
Christie, RJ ;
Grainger, DW .
ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (03) :421-437