Preparation of high performance conductive polymer fibres from double percolated structure

被引:71
作者
Gao, Xiang [1 ]
Zhang, Shuangmei [1 ]
Mai, Fang [1 ]
Lin, Lin [1 ]
Deng, Yi [1 ]
Deng, Hua [1 ]
Fu, Qiang [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBE COMPOSITES; ELECTRICAL-CONDUCTIVITY; HIGH-STRENGTH; DYNAMIC PERCOLATION; EPOXY COMPOSITES; BLENDS; BLACK; NANOCOMPOSITES; NANOFILLERS; THRESHOLD;
D O I
10.1039/c0jm04543h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In our work, efforts have been made to build conductive networks with carbon nanotubes in highly oriented polymer fibres/tapes. It is often reported as a complicated or expensive procedure. Herein, a simple but efficient method is demonstrated for the fabrication of high performance conductive polymer fibres/tapes. To achieve this, carbon nanotubes were selectively dispersed in the polyethylene (PE) phase of a PE/polypropylene (PP) blend to construct conductive networks from a double percolated structure. It was demonstrated that the conductive network could be preserved even at high draw ratio by tailoring the double percolated structure (the blend composition and amount of carbon nanotubes), and a maximum conductivity of 2 S m(-1) and strength of 174 MPa has been achieved. Furthermore, subsequent thermal annealing was shown to recover the conductive network and cracks after annealing. It is interesting to note that such a double percolated conductive fibre/tape could be used for self-healing purposes. Therefore, this study provides a guideline for the fabrication of multifunctional high performance conductive polymer fibres/tapes. Finally, a kinetic model was used to study the relaxation process of highly oriented conductive networks during annealing.
引用
收藏
页码:6401 / 6408
页数:8
相关论文
共 60 条
[1]   Dynamic percolation of carbon nanotube agglomerates in a polymer matrix: comparison of different model approaches [J].
Alig, I. ;
Skipa, T. ;
Lellinger, D. ;
Bierdel, M. ;
Meyer, H. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10) :2264-2267
[2]   Electrical conductivity recovery in carbon nanotube polymer composites after transient shear [J].
Alig, I. ;
Skipa, T. ;
Engel, M. ;
Lellinger, D. ;
Pegel, S. ;
Poetschke, P. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (11) :4223-4226
[3]   Destruction and formation of a conductive carbon nanotube network in polymer melts:: In-line experiments [J].
Alig, Ingo ;
Lellinger, Dirk ;
Engel, Martin ;
Skipa, Tetyana ;
Poetschke, Petra .
POLYMER, 2008, 49 (07) :1902-1909
[4]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[5]   Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres [J].
Bilotti, Emiliano ;
Zhang, Rui ;
Deng, Hua ;
Baxendale, Mark ;
Peijs, Ton .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (42) :9449-9455
[6]   Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes [J].
Broza, G ;
Kwiatkowska, M ;
Roslaniec, Z ;
Schulte, K .
POLYMER, 2005, 46 (16) :5860-5867
[7]   Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites [J].
Bryning, MB ;
Islam, MF ;
Kikkawa, JM ;
Yodh, AG .
ADVANCED MATERIALS, 2005, 17 (09) :1186-+
[8]   Critical concentration in percolating systems containing a high-aspect-ratio filler [J].
Celzard, A ;
McRae, E ;
Deleuze, C ;
Dufort, M ;
Furdin, G ;
Mareche, JF .
PHYSICAL REVIEW B, 1996, 53 (10) :6209-6214
[9]   Reinforcing potential of carbon nanotubes in oriented polymer fibres [J].
Ciselli, P. ;
Wang, Z. ;
Peijs, T. .
MATERIALS TECHNOLOGY, 2007, 22 (01) :10-21
[10]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706