Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer

被引:125
作者
Kumar, Surinder [1 ]
Lombard, David B. [1 ,2 ]
机构
[1] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Inst Gerontol, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
FATTY-ACID OXIDATION; ACTIVATED RECEPTOR-ALPHA; HYPOXIA-INDUCIBLE FACTOR; CELL LUNG-CANCER; PYRUVATE-DEHYDROGENASE COMPLEX; DEPENDENT DEACETYLASE ACTIVITY; UNFOLDED PROTEIN RESPONSE; PHOSPHATE SYNTHETASE 1; CALORIE RESTRICTION; GENE-EXPRESSION;
D O I
10.1089/ars.2014.6213
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significance: Maintenance of metabolic homeostasis is critical for cellular and organismal health. Proper regulation of mitochondrial functions represents a crucial element of overall metabolic homeostasis. Mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) play pivotal roles in promoting this homeostasis by regulating numerous aspects of mitochondrial metabolism in response to environmental stressors. Recent Advances: New work has illuminated multiple links between mitochondrial sirtuins and cancer. SIRT5 has been shown to regulate the recently described post-translational modifications succinyl-lysine, malonyl-lysine, and glutaryl-lysine. An understanding of these modifications is still in its infancy. Enumeration of SIRT3 and SIRT5 targets via advanced proteomic techniques promises to dramatically enhance insight into functions of these proteins. Critical Issues: In this review, we highlight the roles of mitochondrial sirtuins and their targets in cellular and organismal metabolic homeostasis. Furthermore, we discuss emerging roles for mitochondrial sirtuins in suppressing and/or promoting tumorigenesis, depending on the cellular and molecular context. Future Directions: Currently, hundreds of potential SIRT3 and SIRT5 molecular targets have been identified in proteomic experiments. Future studies will need to validate the major targets of these enzymes, and elucidate how acetylation and/or acylation modulate their functionality. A great deal of interest exists in targeting sirtuins pharmacologically; this endeavor will require development of sirtuin-specific modulators (activators and inhibitors) as potential treatments for cancer and metabolic disease. Antioxid. Redox Signal. 22, 1060-1077.
引用
收藏
页码:1060 / 1077
页数:18
相关论文
共 179 条
[1]   A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J].
Ahn, Bong-Hyun ;
Kim, Hyun-Seok ;
Song, Shiwei ;
Lee, In Hye ;
Liu, Jie ;
Vassilopoulos, Athanassios ;
Deng, Chu-Xia ;
Finkel, Toren .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14447-14452
[2]   Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase [J].
Ahuja, Nidhi ;
Schwer, Bjoern ;
Carobbio, Stefania ;
Waltregny, David ;
North, Brian J. ;
Castronovo, Vincenzo ;
Maechler, Pierre ;
Verdin, Eric .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (46) :33583-33592
[3]   Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle [J].
Alam, N ;
Saggerson, ED .
BIOCHEMICAL JOURNAL, 1998, 334 :233-241
[4]   Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study "Treviso Longeva (TRELONG)" [J].
Albani, Diego ;
Ateri, Eleonora ;
Mazzuco, Stefano ;
Ghilardi, Alice ;
Rodilossi, Serena ;
Biella, Gloria ;
Ongaro, Fausta ;
Antuono, Piero ;
Boldrini, Paolo ;
Di Giorgi, Enrico ;
Frigato, Andrea ;
Durante, Elisabetta ;
Caberlotto, Livio ;
Zanardo, Andrea ;
Siculi, Marinella ;
Gallucci, Maurizio ;
Forloni, Gianluigi .
AGE, 2014, 36 (01) :469-478
[5]   Sirtuin-3 (SIRT3), a Novel Potential Therapeutic Target for Oral Cancer [J].
Alhazzazi, Turki Y. ;
Kamarajan, Pachiyappan ;
Joo, Nam ;
Huang, Jing-Yi ;
Verdin, Eric ;
D'Silva, Nisha J. ;
Kapila, Yvonne L. .
CANCER, 2011, 117 (08) :1670-1678
[6]   Uric acid and evolution [J].
Alvarez-Lario, Bonifacio ;
Macarron-Vicente, Jesus .
RHEUMATOLOGY, 2010, 49 (11) :2010-2015
[7]   Altered sirtuin expression is associated with node-positive breast cancer [J].
Ashraf, N. ;
Zino, S. ;
MacIntyre, A. ;
Kingsmore, D. ;
Payne, A. P. ;
George, W. D. ;
Shiels, P. G. .
BRITISH JOURNAL OF CANCER, 2006, 95 (08) :1056-1061
[8]   Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours [J].
Aury-Landas, Juliette ;
Bougeard, Gaelle ;
Castel, Helene ;
Hernandez-Vargas, Hector ;
Drouet, Aurelie ;
Latouche, Jean-Baptiste ;
Schouft, Marie-Therese ;
Ferec, Claude ;
Leroux, Dominique ;
Lasset, Christine ;
Coupier, Isabelle ;
Caron, Olivier ;
Herceg, Zdenko ;
Frebourg, Thierry ;
Flaman, Jean-Michel .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2013, 21 (12) :1369-1376
[9]   SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity [J].
Bao, Jianjun ;
Scott, Iain ;
Lu, Zhongping ;
Pang, Liyan ;
Dimond, Christopher C. ;
Gius, David ;
Sack, Michael N. .
FREE RADICAL BIOLOGY AND MEDICINE, 2010, 49 (07) :1230-1237
[10]   Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach [J].
Bao, Xiucong ;
Wang, Yi ;
Li, Xin ;
Li, Xiao-Meng ;
Liu, Zheng ;
Yang, Tangpo ;
Wong, Chi Fat ;
Zhang, Jiangwen ;
Hao, Quan ;
Li, Xiang David .
ELIFE, 2014, 3