共 5 条
Effects of Root-Induced Compaction on Rhizosphere Hydraulic Properties - X-ray Microtomography Imaging and Numerical Simulations
被引:87
|作者:
Aravena, Jazmin E.
[1
]
Berli, Markus
[2
]
Ghezzehei, Teamrat A.
[3
]
Tyler, Scott W.
[4
]
机构:
[1] Univ Nevada, Dept Civil & Environm Engn, Reno, NV 89557 USA
[2] Desert Res Inst, Div Hydrol Sci, Las Vegas, NV 89119 USA
[3] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA
[4] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA
基金:
美国国家科学基金会;
关键词:
SOIL;
BIOREMEDIATION;
TRANSPORT;
BULK;
FLOW;
D O I:
10.1021/es102566j
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Soil compaction represents one of the most ubiquitous environmental impacts of human development, decreasing bulk-scale soil porosity and hydraulic conductivity, thereby reducing soil productivity and fertility. At the aggregate-scale however, this study shows that natural root-induced compaction increases contact areas between aggregates, leading to an increase in unsaturated hydraulic conductivity of the soils adjacent to the roots. Contrary to intuition, water flow may therefore be locally enhanced due to root-induced compaction. This study investigates these processes by using recent advances in X-ray microtomography (XMT) imaging and numerical water flow modeling to show evolution in interaggregate contact and its implications for water flow between aggregates under partially saturated conditions. Numerical modeling showed that the effective hydraulic conductivity of a pair of aggregates undergoing uniaxial deformation increased following a nonlinear relationship as the interaggregate contact area increased due to increasing aggregate deformation. Numerical modeling using actual XMT images of aggregated soil around a root surrogate demonstrated how root-induced deformation increases unsaturated water flow toward the root, providing insight into the growth, function, and water uptake patterns of roots in natural soils.
引用
收藏
页码:425 / 431
页数:7
相关论文