Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico

被引:83
|
作者
Garcia, Carlos A. [1 ]
Fuentes, Alfredo [2 ,6 ]
Hennecke, Anna [3 ,4 ]
Riegelhaupt, Enrique [5 ]
Manzini, Fabio [1 ]
Masera, Omar [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Invest Energia, Temixco 62580, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Invest Ecosistemas, Morelia 58190, Michoacan, Mexico
[3] IFEU Inst Energy & Environm Res Heidelberg GmbH, D-69120 Heidelberg, Germany
[4] Univ Bonn, Ctr Dev Res ZEF, D-53113 Bonn, Germany
[5] Red Mexicana Bioenergia AC, Morelia 58341, Michoacan, Mexico
[6] Univ Nacl Autonoma Mexico, Fac Ingn, Mexico City 04510, DF, Mexico
关键词
Sugarcane ethanol; GHG emissions; Energy balance; Life cycle assessment; Biofuel; LAND-USE; BIODIESEL; FUEL;
D O I
10.1016/j.apenergy.2010.12.072
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this work was to estimate GHG emissions and energy balances for the future expansion of sugarcane ethanol fuel production in Mexico with one current and four possible future modalities. We used the life cycle methodology that is recommended by the European Renewable Energy Directive (RED), which distinguished the following five system phases: direct Land Use Change (LUC); crop production; biomass transport to industry; industrial processing; and ethanol transport to admixture plants. Key variables affecting total GHG emissions and fossil energy used in ethanol production were LUC emissions, crop fertilization rates, the proportion of sugarcane areas that are burned to facilitate harvest, fossil fuels used in the industrial phase, and the method for allocation of emissions to co-products. The lower emissions and higher energy ratios that were observed in the present Brazilian case were mainly due to the lesser amount of fertilizers applied, also were due to the shorter distance of sugarcane transport, and to the smaller proportion of sugarcane areas that were burned to facilitate manual harvest. The resulting modality with the lowest emissions of equivalent carbon dioxide (CO2e) was ethanol produced from direct juice and generating surplus electricity with 36.8 kgCO(2e)/GJ(ethanol). This was achieved using bagasse as the only fuel source to satisfy industrial phase needs for electricity and steam. Mexican emissions were higher than those calculated for Brazil (27.5 kgCO(2e)/GJ(ethanol)) among all modalities. The Mexican modality with the highest ratio of renewable/fossil energy was also ethanol from sugarcane juice generating surplus electricity with 4.8 GJ(ethanol)/GJ(fossil). (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2088 / 2097
页数:10
相关论文
共 50 条
  • [1] Life-cycle greenhouse gas emissions and energy balances of a biodiesel production from palm fatty acid distillate (PFAD)
    Cho, Hyun Jun
    Kim, Jin-Kuk
    Ahmed, Faisal
    Yeo, Yeong-Koo
    APPLIED ENERGY, 2013, 111 : 479 - 488
  • [2] Life-cycle greenhouse gas emissions of corn kernel fiber ethanol
    Qin, Zhangcai
    Li, Qianfeng
    Wang, Michael
    Han, Jeongwoo
    Dunn, Jennifer B.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2018, 12 (06): : 1013 - 1022
  • [3] Life-cycle energy use and greenhouse gas emission implications of Brazilian sugarcane ethanol simulated with the GREET model
    Wang, Michael
    Wu, May
    Huo, Hong
    Liu, Jiahong
    INTERNATIONAL SUGAR JOURNAL, 2008, 110 (1317): : 527 - +
  • [4] Aggregation and Allocation of Greenhouse Gas Emissions in Oil and Gas Production: Implications for Life-Cycle Greenhouse Gas Burdens
    Chen, Qining
    Dunn, Jennifer B.
    Allen, David T.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20): : 17065 - 17073
  • [5] Life-cycle greenhouse gas emissions reduction potential for corn ethanol refining in the USA
    Xu, Hui
    Lee, Uisung
    Wang, Michael
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2022, 16 (03): : 671 - 681
  • [6] Carsharing's life-cycle impacts on energy use and greenhouse gas emissions
    Chen, T. Donna
    Kockelman, Kara M.
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2016, 47 : 276 - 284
  • [7] Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States
    Hao Cai
    Jennifer B Dunn
    Zhichao Wang
    Jeongwoo Han
    Michael Q Wang
    Biotechnology for Biofuels, 6
  • [8] Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States
    Cai, Hao
    Dunn, Jennifer B.
    Wang, Zhichao
    Han, Jeongwoo
    Wang, Michael Q.
    BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [9] Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996)
    Macedo, ID
    BIOMASS & BIOENERGY, 1998, 14 (01): : 77 - 81
  • [10] Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996)
    De Carvalho Macedo, Isaias
    Biomass and Bioenergy, 1998, 14 (01): : 77 - 81