A Hybrid-Order Spectral-Spatial Feature Network for Hyperspectral Image Classification

被引:1
作者
Liu, Dongxu [1 ,2 ]
Han, Guangliang [1 ]
Liu, Peixun [1 ]
Wang, Yirui [1 ,2 ]
Yang, Hang [1 ]
Chen, Dianbing [1 ]
Li, Qingqing [1 ,2 ]
Wu, Jiajia [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
hyperspectral image classification; first-order feature; second-order representation; spectral-spatial feature; DOMAIN ADAPTATION; CNN;
D O I
10.3390/rs14153555
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Convolutional neural networks are widely applied in hyperspectral image (HSI) classification and show excellent performance. However, there are two challenges: the first is that fine features are generally lost in the process of depth transfer; the second is that most existing studies usually restore to first-order features, whereas they rarely consider second-order representations. To tackle the above two problems, this article proposes a hybrid-order spectral-spatial feature network (HS(2)FNet) for hyperspectral image classification. This framework consists of a precedent feature extraction module (PFEM) and a feature rethinking module (FRM). The former is constructed to capture multiscale spectral-spatial features and focus on adaptively recalibrate channel-wise and spatial-wise feature responses to achieve first-order spectral-spatial feature distillation. The latter is devised to heighten the representative ability of HSI by capturing the importance of feature cross-dimension, while learning more discriminative representations by exploiting the second-order statistics of HSI, thereby improving the classification performance. Massive experiments demonstrate that the proposed network achieves plausible results compared with the state-of-the-art classification methods.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Multiscale spectral-spatial cross-extraction network for hyperspectral image classification
    Gao, Hongmin
    Wu, Hongyi
    Chen, Zhonghao
    Zhang, Yunfei
    Zhang, Yiyan
    Li, Chenming
    IET IMAGE PROCESSING, 2022, 16 (03) : 755 - 771
  • [32] Hyperspectral image spectral-spatial classification using local tensor discriminant feature extraction
    Wu, Di
    Zhang, Ye
    Zhong, Sheng Wei
    Zhou, Guang Jiao
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [33] Center-similarity spectral-spatial attention network for hyperspectral image classification
    Zhang, YaJuan
    Liang, JiaHao
    Niu, PengHui
    Xu, WenJia
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [34] Hyperspectral Image Spectral-Spatial Classification Method Based on Deep Adaptive Feature Fusion
    Mu, Caihong
    Liu, Yijin
    Liu, Yi
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [35] A 3D Cascaded Spectral-Spatial Element Attention Network for Hyperspectral Image Classification
    Yan, Huaiping
    Wang, Jun
    Tang, Lei
    Zhang, Erlei
    Yan, Kun
    Yu, Kai
    Peng, Jinye
    REMOTE SENSING, 2021, 13 (13)
  • [36] A Multi-Scale and Multi-Level Spectral-Spatial Feature Fusion Network for Hyperspectral Image Classification
    Mu, Caihong
    Guo, Zhen
    Liu, Yi
    REMOTE SENSING, 2020, 12 (01)
  • [37] Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
    Zhang, Minghua
    Luo, Hongling
    Song, Wei
    Mei, Haibin
    Su, Cheng
    REMOTE SENSING, 2021, 13 (21)
  • [38] Spectral-Spatial Classification of Hyperspectral Imagery Based on Deep Convolutional Network
    Zhang, Haokui
    Li, Ying
    2016 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2018, : 44 - 47
  • [39] Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12924 - 12937
  • [40] Spectral-Spatial Adaptive Weighted Fusion and Residual Dense Network for hyperspectral image classification
    Sun, Junding
    Zhang, Hongyuan
    Ma, Xiaoxiao
    Wang, Ruinan
    Sima, Haifeng
    Wang, Jianlong
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2025, 28 (01) : 21 - 33