Branching Brownian motion with an inhomogeneous breeding potential

被引:12
作者
Harris, J. W. [1 ]
Harris, S. C. [2 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2009年 / 45卷 / 03期
关键词
Branching Brownian motion; Additive martingales; Spine constructions; EQUATION;
D O I
10.1214/08-AIHP300
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article concerns branching Brownian motion (BBM) with dyadic branching at rate beta vertical bar y vertical bar(p) for a particle with spatial position y is an element of R, where beta > 0. It is known that for p > 2 the number of particles blows up almost surely in finite time, while for p = 2 the expected number of particles alive blows up in finite time, although the number of particles alive remains finite almost surely, for all time. We define the right-most particle, R(t), to be the supremum of the spatial positions of the particles alive at time t and study the asymptotics of R(t) as t -> infinity. In the case of constant breeding at rate beta the linear asymptotic for R(t) is long established. Here, we find asymptotic results for R(t) in the case p is an element of (0, 2]. In contrast to the linear asymptotic in standard BBM we find polynomial asymptotics of arbitrarily high order as p up arrow 2, and a non-trivial limit for In R(t) when p = 2. Our proofs rest on the analysis of certain additive martingales, and related spine changes of measure.
引用
收藏
页码:793 / 801
页数:9
相关论文
共 12 条
[1]  
[Anonymous], MEM AM MATH SOC
[2]   Change of measures for Markov chains and the LlogL theorem for branching processes [J].
Athreya, KB .
BERNOULLI, 2000, 6 (02) :323-338
[3]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[4]   KPP EQUATION AND SUPERCRITICAL BRANCHING BROWNIAN-MOTION IN THE SUBCRITICAL SPEED AREA - APPLICATION TO SPATIAL TREES [J].
CHAUVIN, B ;
ROUAULT, A .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :299-314
[5]  
Durrett Rick, 2017, Probability: Theory and Examples, V5th
[6]  
Engländer J, 2004, ANN PROBAB, V32, P78
[7]  
HARDY R, 2009, SEMINAIRE P IN PRESS, V42
[8]  
Ito K., 1965, GRUNDLEHREN MATH WIS, V125
[9]  
Kurtz Thomas, 1997, Classical and Modern Branching Processes, V84, P181, DOI [10.1007/978-1-4612-1862-3, DOI 10.1007/978-1-4612-1862-3, 10.1007/978-1-4612-1862-314, DOI 10.1007/978-1-4612-1862-314]
[10]   Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis [J].
Kyprianou, AE .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (01) :53-72