On the Krull-Schmidt-Azumaya theorem for integral group rings

被引:1
作者
Hindman, P [1 ]
Klingler, L
Odenthal, CJ
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
关键词
Krull-Schmidt-Azumaya; unique decomposition; integral group ring;
D O I
10.1080/00927879808826371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the torsion free Krull-Schmidt-Azumaya Theorem holds for the integral group ring Z D-8, where D-8 is the dihedral group of order 8, but torsion free cancellation land hence also the torsion free Krull-Schmidt-Azumaya theorem) fails for the integral group ring ZD(32). We summarize the cases for which the integral group ring ZG is known to satisfy the torsion free Krull-Schmidt-Azumaya Theorem, ZD(16) being the only open case.
引用
收藏
页码:3743 / 3758
页数:16
相关论文
共 12 条
[1]  
CURTIS CW, 1981, METHOD REPRESENTATIO, V1
[2]   FINITE-GROUPS WITH TRIVIAL CLASS GROUPS [J].
ENDO, S ;
HIRONAKA, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (01) :161-174
[3]   CLASS GROUPS OF QUATERNION AND DIHEDRAL 2-GROUPS [J].
FROHLICH, A ;
KEATING, ME ;
WILSON, SMJ .
MATHEMATIKA, 1974, 21 (41) :64-71
[4]   CANCELLATION AND DIRECT-SUMMANDS IN DIMENSION-1 [J].
GURALNICK, RM ;
LEVY, LS .
JOURNAL OF ALGEBRA, 1991, 142 (02) :310-347
[6]   Krull-Schmidt theorems in dimension 1 [J].
Levy, LS ;
Odenthal, CJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (09) :3391-3455
[8]  
Reiner I., 1975, MAXIMAL ORDERS
[9]   TORSION FREE CANCELLATION OVER ORDERS [J].
SWAN, RG .
ILLINOIS JOURNAL OF MATHEMATICS, 1988, 32 (03) :329-360
[10]  
Washington L. C., 1982, Graduate Texts in Mathematics, V83