Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

被引:22
|
作者
Chen, Song-Gui [1 ]
Zhang, Chuan-Hu [2 ]
Feng, Yun-Tian [3 ]
Sun, Qi-Cheng [2 ]
Jin, Feng [2 ]
机构
[1] Tianjin Res Inst Water Transport Engn, Tianjin, Peoples R China
[2] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China
[3] Swansea Univ, Sch Engn, Civil & Computat Engn Ctr, Swansea, W Glam, Wales
关键词
Bingham plastic; multiple-relaxation-time; lattice Boltzmann model; parallel frame; drag coefficient; CREEPING MOTION; CFD; SPHERE; DISPERSION;
D O I
10.1080/19942060.2016.1169946
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar-Gross-Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou's modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re) and Bingham number (Bn). These results reveal the flow behavior of Bingham plastics.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 50 条
  • [1] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    SongGui Chen
    QiCheng Sun
    Feng Jin
    JianGuo Liu
    Science China Physics, Mechanics and Astronomy, 2014, 57 : 532 - 540
  • [2] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    CHEN SongGui
    SUN QiCheng
    JIN Feng
    LIU JianGuo
    Science China(Physics,Mechanics & Astronomy), 2014, Mechanics & Astronomy)2014 (03) : 532 - 540
  • [3] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    Chen SongGui
    Sun QiCheng
    Jin Feng
    Liu JianGuo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (03) : 532 - 540
  • [4] Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows
    Hu Jia-Yi
    Zhang Wen-Huan
    Chai Zhen-Hua
    Shi Bao-Chang
    Wang Yi-Hang
    ACTA PHYSICA SINICA, 2019, 68 (23)
  • [5] An efficient phase-field-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows
    Liang, H.
    Shi, B. C.
    Chai, Z. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (07) : 1524 - 1538
  • [6] Three-dimensional multiple-relaxation-time discrete Boltzmann model of compressible reactive flows with nonequilibrium effects
    Ji, Yu
    Lin, Chuandong
    Luo, Kai H.
    AIP ADVANCES, 2021, 11 (04)
  • [7] Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows
    Feng Chen
    AiGuo Xu
    GuangCai Zhang
    YongLong Wang
    Frontiers of Physics, 2014, 9 (02) : 246 - 254
  • [8] Improved three-dimensional multiple-relaxation-time color-gradient lattice Boltzmann finite-difference model for thermocapillary flows
    Fu, Xiaojin
    Sun, Jinju
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [9] Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows
    Chai, Zhenhua
    Shi, Baochang
    Guo, Zhaoli
    Rong, Fumei
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (5-6) : 332 - 342
  • [10] THREE-DIMENSIONAL MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN SIMULATION OF VAPOR CONDENSATION ON SUBCOOLED WALL
    Zhao, Wandong
    Xu, Ben
    Zhang, Ying
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 8A, 2019,