On uniqueness polynomials and Bi-URS for p-adic meromorphic functions

被引:20
作者
Khoai, HH
An, TTH
机构
[1] Inst Math, Hanoi 10000, Vietnam
[2] Vinh Pedag Inst, Vinh Nghe An, Vietnam
关键词
D O I
10.1006/jnth.2000.2591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be an algebraically closed field of characteristic zero, and let K be an algebraically closed field of characteristic zero. complete for an ultrametric absolute value. A(K) will denote the ring of entire functions in K and M(K) will denote the field of meromorphic functions in K. In this paper we give some classes of uniqueness polynomials for. NIR) and show the existence of a bi-URS fur M(K) of the form ({a(1), a(2), a(3), a(4)}, {omega}). Also a sufficient condition of uniqueness range sets for M(K) in terms of uniqueness polynomials is given. (C) 2001 Academic Press.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 23 条
[1]   On uniqueness of p-adic entire functions [J].
Boutabaa, A ;
Escassut, A ;
Haddad, L .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (02) :145-155
[2]  
Boutabaa A, 1999, LECT NOTES PURE APPL, V207, P29
[3]   On uniqueness of p-adic meromorphic functions [J].
Boutabaa, A ;
Escassut, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2557-2568
[4]  
BOUTABAA A, 1990, MANUSCRIPTA MATH, V67, P250
[5]  
BOUTABAA A, IN PRESS REND CIRC M
[6]   Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem [J].
Cherry, W ;
Ye, ZA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :5043-5071
[7]   Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity [J].
Cherry, W ;
Yang, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :967-971
[8]   Urs, ursim, and non-urs for p-adic functions and polynomials [J].
Escassut, A ;
Haddad, L ;
Vidal, R .
JOURNAL OF NUMBER THEORY, 1999, 75 (01) :133-144
[9]  
Frank G., 1998, Complex Var. Theory Appl, V37, P185, DOI DOI 10.1080/17476939808815132
[10]  
FUJIMOTO H, 1999, IN PRESS P ISAAC C F