Time evolution of positron affinity trapping at embedded nanoparticles by age-momentum correlation

被引:11
作者
Inoue, K. [1 ,2 ]
Nagai, Y. [1 ]
Tang, Z. [3 ,4 ]
Toyama, T. [1 ]
Hosoda, Y. [1 ]
Tsuto, A. [1 ]
Hasegawa, M. [3 ,5 ]
机构
[1] Tohoku Univ, Oarai Ctr, Inst Mat Res, Oarai, Ibaraki 3111313, Japan
[2] Kyoto Univ, Grad Sch Engn, Dept Mat Sci & Engn, Sakyo Ku, Kyoto 6068501, Japan
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] E China Normal Univ, Key Lab Polar Mat & Devices, Minist Educ China, Shanghai 200241, Peoples R China
[5] Tohoku Univ, Ctr Cyclotron & Radioisotope, Sendai, Miyagi 9808578, Japan
基金
中国国家自然科学基金;
关键词
PRESSURE-VESSEL STEELS; TEMPERATURE; METALS; IRRADIATION; SOLIDS; STATE;
D O I
10.1103/PhysRevB.83.115459
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A positron annihilation age-momentum correlation (AMOC) technique using a digital oscilloscope with high time resolution enabled us to directly estimate positron trapping rate to nano-and subnanoparticles embedded in materials by observing the annihilation time evolution of the momentum distribution of affinity-trapped positron-electron pairs. As a representative case we successfully apply the present technique to (sub) nano Cu particles embedded in an Fe-Cu dilute alloy after thermal aging. This enhances the ability of the positron annihilation method as a quantitative tool to detect ultrafine embedded particles which are difficult to observe by other techniques. We also show that the AMOC measurements give chemical information on the embedded particles through the positron trapping kinetic behavior.
引用
收藏
页数:5
相关论文
共 25 条
[1]   Increased elemental specificity of positron annihilation spectra [J].
AsokaKumar, P ;
Alatalo, M ;
Ghosh, VJ ;
Kruseman, AC ;
Nielsen, B ;
Lynn, KG .
PHYSICAL REVIEW LETTERS, 1996, 77 (10) :2097-2100
[2]   POSITRON DYNAMICS IN SOLIDS [J].
BRANDT, W .
APPLIED PHYSICS, 1974, 5 (01) :1-23
[3]  
Dlubek G., 1987, MATER SCI FORUM, V13-14, P11, DOI [10.4028/www.scientific.net/MSF.13-14.11, DOI 10.4028/WWW.SCIENTIFIC.NET/MSF.13-14.11]
[4]  
Dupasquier A., 1995, Positron spectroscopy of solids
[5]  
ELDRUP M, 1987, PHYS STATUS SOLIDI A, V102, P145, DOI 10.1002/pssa.2211020114
[6]   WORK-FUNCTIONS AND EFFECTIVE MASSES OF POSITRONS IN METALS [J].
FLETCHER, G ;
FRY, JL ;
PATTNAIK, PC .
PHYSICAL REVIEW B, 1983, 27 (07) :3987-3991
[7]   Irradiation-induced vacancy and Cu aggregations in Fe-Cu model alloys of reactor pressure vessel steels: state-of-the-art positron annihilation spectroscopy [J].
Hasegawa, M ;
Tang, Z ;
Nagai, Y ;
Chiba, T ;
Kuramoto, E ;
Takenaka, M .
PHILOSOPHICAL MAGAZINE, 2005, 85 (4-7) :467-478
[8]   Invited review article: Atom probe tomography [J].
Kelly, Thomas F. ;
Miller, Michael K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
[9]  
Krause-Rehberg R., 1999, Positron Annihilation in Semiconductors: Defect Studies
[10]  
Miller M.K., 2000, ATOM PROBE TOMOGRAPH