Exact spectrum of the spin-s Heisenberg chain with generic non-diagonal boundaries

被引:12
作者
Cao, Junpeng [1 ,2 ]
Cui, Shuai [1 ]
Yang, Wen-Li [3 ,4 ]
Shi, Kangjie [3 ]
Wang, Yupeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[3] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
[4] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Bethe Ansatz; Lattice Integrable Models; BETHE-ANSATZ SOLUTION; T-Q RELATION; XXZ-SPIN; FUNCTIONAL RELATIONS; ARBITRARY SPINS; K-MATRICES; MODEL; SEPARATION; VARIABLES; STATE;
D O I
10.1007/JHEP02(2015)036
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The off-diagonal Bethe ansatz method is generalized to the high spin integrable systems associated with the su(2) algebra by employing the spin-s isotropic Heisenberg chain model with generic integrable boundaries as an example. With the fusion techniques, certain closed operator identities for constructing the functional T - Q relations and the Bethe ansatz equations are derived. It is found that a variety of inhomogeneous T - Q relations obeying the operator product identities can be constructed. Numerical results for two-site s = 1 case indicate that an arbitrary choice of the derived T - Q relations is enough to give the complete spectrum of the transfer matrix.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 78 条
[1]   FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY [J].
AHN, C ;
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :409-439
[2]   SOLUTION OF THE MULTICHANNEL KONDO PROBLEM [J].
ANDREI, N ;
DESTRI, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (05) :364-367
[3]  
[Anonymous], 1982, Uspekhi Mat. Nauk
[5]   EXACT SOLUTION OF THE ONE-DIMENSIONAL ISOTROPIC HEISENBERG CHAIN WITH ARBITRARY SPINS S [J].
BABUJIAN, HM .
PHYSICS LETTERS A, 1982, 90 (09) :479-482
[6]  
Baiyasi R., 2012, J STAT MECH-THEORY E, V1210
[7]   Spectrum of boundary states in N=1 SUSY sine-Gordon theory [J].
Bajnok, Z ;
Palla, L ;
Takács, G .
NUCLEAR PHYSICS B, 2002, 644 (03) :509-532
[8]  
Bajnok Z, 2006, J STAT MECH-THEORY E, V0606
[9]  
Baseilhac P., 2007, JSTAT, V0709
[10]  
Baxter R.J., 1982, Exactly Solved Models in Statistical Mechanics