Partial energy gradient based on the fragment molecular orbital method: Application to geometry optimization

被引:25
|
作者
Ishikawa, Takeshi
Yamamoto, Norifumi
Kuwata, Kazuo [1 ]
机构
[1] Gifu Univ, Div Prion Res, Ctr Emerging Infect Dis, Gifu 5011194, Japan
关键词
DYNAMICS FMO-MD; SIMULATION; STATE;
D O I
10.1016/j.cplett.2010.09.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To obtain the energy gradient of a specific region in a large molecule, we defined a partial energy gradient (PEG) based on the fragment molecular orbital (FMO) method. The suitability of PEG was examined by performing geometry optimizations of model systems, and we found that optimization with PEG could provide almost the same geometry obtained with the full FMO energy gradient. We also carried out calculations on real biomolecular systems; these calculations demonstrated a great advantage of PEG in computational effort. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 50 条
  • [1] Fully analytic energy gradient for the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [2] Fully analytic energy gradient in the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (12):
  • [3] A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Sawada, Toshihiko
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (03):
  • [4] Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method
    Mironov, Vladimir
    Alexeev, Yuri
    Fedorov, Dmitri G.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (12)
  • [5] Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Alexeev, Yuri
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (04): : 282 - 288
  • [6] Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2010, 492 (4-6) : 302 - 308
  • [7] Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (49): : 9794 - 9804
  • [8] Unrestricted Hartree-Fock based on the fragment molecular orbital method: Energy and its analytic gradient
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Yokojima, Satoshi
    Ogata, Koji
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04): : 044110
  • [9] Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method
    Brorsen, Kurt R.
    Zahariev, Federico
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (12) : 5297 - 5307
  • [10] Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient
    Brorsen, Kurt R.
    Minezawa, Noriyuki
    Xu, Feng
    Windus, Theresa L.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (12) : 5008 - 5012