Document images classification based on deep learning

被引:2
作者
Hu, Biao [1 ]
Ergu, Daji [1 ]
Yang, Huan [1 ]
Liu, Kuiyi [1 ]
Cai, Ying [1 ]
机构
[1] Southwest Minzu Univ, Key Lab Elect & Informat Engn, State Ethn Affairs Commiss, Chengdu 610041, Peoples R China
来源
7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE | 2019年 / 162卷
基金
中国国家自然科学基金;
关键词
Financial business; Convolutional neural network; Image classification;
D O I
10.1016/j.procs.2019.12.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the financial business, there are cumbersome and error-prone manual procedures and long workflows. In this paper, MSCNN model is proposed to solve automatically identify and classify images such as documents. First, the image data is preprocessed to enhance the image features. Then, the image is extracted by the cross-connect structure and multi-channel convolution. Finally, the image is classified by softmax layer. The experimental results on the dataset show that the proposed model has a high classification accuracy in image classification. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:514 / 522
页数:9
相关论文
共 50 条
[41]   Deep Learning Based Classification for Hoverflies (Diptera: Syrphidae) [J].
Utku, Anil ;
Ayaz, Zafer ;
Ciftci, Derya ;
Akcayol, M. Ali .
JOURNAL OF THE ENTOMOLOGICAL RESEARCH SOCIETY, 2023, 25 :529-544
[42]   Classification of salivary gland tumors in optical coherence tomography images based on deep learning [J].
Wu, Guangyi ;
Yang, Zihan ;
Yuan, Zhuoqun ;
Shang, Jianwei ;
Zhang, Jun ;
Liang, Yanmei .
LASER PHYSICS, 2022, 32 (06)
[43]   Dark Area Classification From Airborne SAR Images Based on Deep Margin Learning [J].
Zhu, Hongliang .
IEEE ACCESS, 2021, 9 :139823-139841
[44]   A deep learning LSTM-based approach for AMD classification using OCT images [J].
Hamid, Laila ;
Elnokrashy, Amgad ;
Abdelhay, Ehab H. ;
Abdelsalam, Mohamed M. .
Neural Computing and Applications, 2024, 36 (31) :19531-19547
[45]   Deep Learning Models for Pneumonia Identification and Classification Based on X-Ray Images [J].
Naralasetti, Veeranjaneyulu ;
Shaik, Reshmi Khadherbhi ;
Katepalli, Gayatri ;
Bodapati, Jyostna Devi .
TRAITEMENT DU SIGNAL, 2021, 38 (03) :903-909
[46]   Classification of imbalanced hyperspectral images using SMOTE-based deep learning methods [J].
Ozdemir, Akin ;
Polat, Kemal ;
Alhudhaif, Adi .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
[47]   Deep learning-based explainable target classification for synthetic aperture radar images [J].
Mandeep ;
Pannu, Husanbir Singh ;
Malhi, Avleen .
2020 13TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2020, :34-39
[48]   A deep learning-based compression and classification technique for whole slide histopathology images [J].
Barsi A. ;
Nayak S.C. ;
Parida S. ;
Shukla R.M. .
International Journal of Information Technology, 2024, 16 (7) :4517-4526
[49]   Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images [J].
Noothout, Julia M. H. ;
de Vos, Bob D. ;
Wolterink, Jelmer M. ;
Postma, Elbrich M. ;
Smeets, Paul A. M. ;
Takx, Richard A. P. ;
Leiner, Tim ;
Viergever, Max A. ;
Isgum, Ivana .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) :4011-4022
[50]   Extraction of Number Plate Images Based on Image Category Classification Using Deep Learning [J].
Shima, Yoshihiro .
2016 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), 2016, :19-26