Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields

被引:30
|
作者
Fablet, Ronan [1 ,4 ]
Phi Huynh Viet [2 ,4 ]
Lguensat, Redouane [3 ,4 ]
机构
[1] IMT Atlantique, Signal & Commun Dept, F-292238 Brest, France
[2] IMT Atlantique, F-292238 Brest, France
[3] IMT Atlantique, Comp Vis, F-292238 Brest, France
[4] Lab STICC, F-292238 Brest, France
来源
关键词
Analog and exemplar-based models; data assimilation; multi-scale decomposition; ocean remtote sensing data; optimal interpolation; patch-based representation; SEA-SURFACE TEMPERATURE; IMAGE;
D O I
10.1109/TCI.2017.2749184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Satellite-derived products are of key importance for the high-resolution monitoring of the ocean surface on a global scale. Due to the sensitivity of spaceborne sensors to the atmospheric conditions as well as the associated spatio-temporal sampling, ocean remote sensing data may be subject to high-missing data rates. The spatio-temporal interpolation of these data remains a key challenge to deliver L4 gridded products to endusers. Whereas operational products mostly rely on model-driven approaches, especially optimal interpolation based on Gaussian process priors, the availability of large-scale observation and simulation datasets calls for the development of novel data-driven models. This study investigates such models. We extend the recently introduced analog data assimilation to high-dimensional spatio-temporal fields using a multiscale patch-based decomposition. Using an observing system simulation experiment for sea surface temperature, we demonstrate the relevance of the proposed data-driven scheme for the real missing data patterns of the high-resolution infrared METOP sensor. It has resulted in a significant improvement w.r.t. state-of-the-art techniques in terms of interpolation error (about 50% of relative gain) and spectral characteristics for horizontal scales smaller than 100 km. We further discuss the key features and parameterizations of the proposed data-driven approach as well as its relevance with respect to classical interpolation techniques.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [1] Spatio-Temporal Decomposition of Satellite-Derived SST-SSH Fields: Links Between Surface Data and Ocean Interior Dynamics in the Agulhas Region
    Le Goff, Clement
    Fablet, Ronan
    Tandeo, Pierre
    Autret, Emmanuelle
    Chapron, Bertrand
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (11) : 5106 - 5112
  • [2] Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation
    Fablet, Ronan
    Phi Huynh Viet
    Lguensat, Redouane
    Horrein, Pierre-Henri
    Chapron, Bertrand
    REMOTE SENSING, 2018, 10 (02):
  • [3] Neural Network Based Kalman Filters for the Spatio-Temporal Interpolation of Satellite-Derived Sea Surface Temperature
    Ouala, Said
    Fablet, Ronan
    Herzet, Cedric
    Chapron, Bertrand
    Pascual, Ananda
    Collard, Fabrice
    Gaultier, Lucile
    REMOTE SENSING, 2018, 10 (12):
  • [4] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [5] Data-driven spatio-temporal modelling of glioblastoma
    Jorgensen, Andreas Christ Solvsten
    Hill, Ciaran Scott
    Sturrock, Marc
    Tang, Wenhao
    Karamched, Saketh R.
    Gorup, Dunja
    Lythgoe, Mark F.
    Parrinello, Simona
    Marguerat, Samuel
    Shahrezaei, Vahid
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):
  • [6] Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation
    Manzano, J. M.
    Orihuela, L.
    Pacheco, E.
    Pereira, M.
    ISA TRANSACTIONS, 2025, 156 : 535 - 550
  • [7] Data-driven Comparison of Spatio-temporal Monitoring Techniques
    Caley, Jeffrey A.
    Hollinger, Geoffrey A.
    OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [8] Adaptive spatio-temporal models for satellite ecological data
    Carlo Grillenzoni
    Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9 : 158 - 180
  • [9] Adaptive spatio-temporal models for satellite ecological data
    Grillenzoni, C
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2004, 9 (02) : 158 - 180
  • [10] Sensitivity to spatio-temporal resolution of satellite-derived daily surface solar irradiation
    Journee, M.
    Stoeckli, R.
    Bertrand, C.
    REMOTE SENSING LETTERS, 2012, 3 (04) : 315 - 324