A note on a superlinear indefinite Neumann problem with multiple positive solutions

被引:25
作者
Boscaggin, Alberto [1 ]
机构
[1] SISSA ISAS, Int Sch Adv Studies, I-34136 Trieste, Italy
关键词
Nonlinear boundary value problems; Indefinite weight; Positive solutions; Shooting method; EXISTENCE; EQUATIONS;
D O I
10.1016/j.jmaa.2010.10.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of three positive solutions for the Neumann problem associated to u(n) + a(t)u(gamma+1) = 0, assuming that a(t) has two positive humps and integral(T)(0) a(-)(t)dt is large enough. Actually, the result holds true for a more general class of superlinear nonlinearities. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 17 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]  
[Anonymous], 2000, TOPOL METHOD NONL AN
[3]  
[Anonymous], 1994, Topol. Methods Nonlinear Anal.
[4]   EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR NEUMANN PROBLEMS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
MATHEMATISCHE ZEITSCHRIFT, 1988, 199 (02) :257-278
[5]  
Berestycki H., 1995, NODEA-NONLINEAR DIFF, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[6]  
Bingham N.H., 1989, REGULAR VARIATION
[7]   Multiple positive solutions of superlinear elliptic problems with sign-changing weight [J].
Bonheure, D ;
Gomes, JM ;
Habets, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (01) :36-64
[8]   CONTINUABILITY OF SOLUTIONS OF SECOND ORDER DIFFERENTIAL EQUATIONS [J].
BURTON, T ;
GRIMMER, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 29 (02) :277-&
[9]   RAPID OSCILLATION, NONEXTENDABILITY, AND EXISTENCE OF PERIODIC-SOLUTIONS TO 2ND ORDER NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
BUTLER, GJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 22 (02) :467-477
[10]   Morse theory for indefinite nonlinear elliptic problems [J].
Chang, Kung-Ching ;
Jiang, Mei-Yue .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01) :139-158