CANONICAL ALMOST COMPLEX STRUCTURES ON ACH EINSTEIN MANIFOLDS

被引:0
作者
Matsumoto, Yoshihiko [1 ]
机构
[1] Osaka Univ, Toyonaka, Osaka, Japan
关键词
asymptotically complex hyperbolic spaces; almost CR structures; BERGMAN-KERNEL; OPERATORS; METRICS;
D O I
10.2140/pjm.2021.314.375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On asymptotically complex hyperbolic (ACH) Einstein manifolds, we consider a certain variational problem for almost complex structures compatible with the metric, for which the linearized Euler-Lagrange equation at Kaliler-Einstein structures is given by the Dolbeault Laplacian acting on (0, 1)-forms with values in the holomorphic tangent bundle. A deformation result of Einstein ACH metrics associated with critical almost complex structures for this variational problem is given. It is also shown that the asymptotic expansion of a critical almost complex structure is determined by the induced (possibly nonintegrable) CR structure on the boundary at infinity up to a certain order.
引用
收藏
页码:375 / 410
页数:37
相关论文
共 50 条
  • [41] Complete Kahler-Einstein manifolds
    Kuehnel, Marco
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 171 - 181
  • [42] There are no proper Berwald-Einstein manifolds
    Deng, Shaoqing
    Kertesz, David Csaba
    Yan, Zaili
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (1-2): : 245 - 249
  • [43] COMPATIBILITY BETWEEN NON-KaHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS
    Ornea, L.
    Otiman, A-, I
    Stanciu, M.
    TRANSFORMATION GROUPS, 2023, 28 (04) : 1669 - 1686
  • [44] Critical Point Equation on Almost Kenmotsu Manifolds
    De, U. C.
    Mandal, K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (01) : 69 - 77
  • [45] Rigidity of Einstein manifolds with positive scalar curvature
    Xu, Hong-wei
    Gu, Juan-ru
    MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 169 - 193
  • [46] Destabilising compact warped product Einstein manifolds
    Batat, Wafaa
    Hall, Stuart
    Murphy, Thomas
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (05) : 1061 - 1094
  • [47] Einstein-like warped product manifolds
    Mantica, Carlo Alberto
    Shenawy, Sameh
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (11)
  • [48] ON BACH FLAT WARPED PRODUCT EINSTEIN MANIFOLDS
    Chen, Qiang
    He, Chenxu
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 265 (02) : 313 - 326
  • [49] NON-COMPACT EINSTEIN MANIFOLDS WITH SYMMETRY
    Boehm, Christoph
    Lafuente, Ramiro A.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (03) : 591 - 651
  • [50] Kählerity of Einstein four-manifolds
    Li, Xiaolong
    Zhang, Yongjia
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (01)