Gravitational waves as a new probe of Bose-Einstein condensate Dark Matter

被引:49
作者
Dev, P. S. Bhupal [1 ,2 ,3 ]
Lindner, Manfred [1 ]
Ohmer, Sebastian [1 ]
机构
[1] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[3] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
关键词
INTERACTION CROSS-SECTION; LARGE-SCALE STRUCTURE; COSMOLOGICAL SIMULATIONS; EQUIVALENCE PRINCIPLE; CONSTRAINTS; GALAXIES; MILKY; EVOLUTION; DENSITY; AXIONS;
D O I
10.1016/j.physletb.2017.08.043
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
There exists a class of ultralight Dark Matter (DM) models which could give rise to a Bose-Einstein condensate (BEC) in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW) signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
[42]   Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos [J].
Chavanis, Pierre-Henri .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (06)
[43]   Detection of a universal core-halo transition in dwarf galaxies as predicted by Bose-Einstein dark matter [J].
Pozo, Alvaro ;
Broadhurst, Tom ;
de Martino, Ivan ;
Chiueh, Tzihong ;
Smoot, George F. ;
Bonoli, Silvia ;
Angulo, Raul .
PHYSICAL REVIEW D, 2024, 110 (04)
[44]   Relativistic model of an anisotropic star with Bose-Einstein dark matter density profile in f (T) gravity [J].
Das, Samprity ;
Rudra, Prabir ;
Chattopadhyay, Surajit .
NUCLEAR PHYSICS B, 2025, 1012
[45]   Long-time expansion of a Bose-Einstein condensate: Observability of Anderson localization [J].
Donsa, Stefan ;
Hofstaetter, Harald ;
Koch, Othmar ;
Burgdoerfer, Joachim ;
Brezinova, Iva .
PHYSICAL REVIEW A, 2017, 96 (04)
[46]   Strong Gravitational Lensing as a Probe of Dark Matter [J].
Vegetti, S. ;
Birrer, S. ;
Despali, G. ;
Fassnacht, C. D. ;
Gilman, D. ;
Hezaveh, Y. ;
Levasseur, L. Perreault ;
Mckean, J. P. ;
Powell, D. M. ;
O'Riordan, C. M. ;
Vernardos, G. .
SPACE SCIENCE REVIEWS, 2024, 220 (05)
[47]   Dynamics of Stimulated Atomic-Molecular Raman Conversion in a Bose-Einstein Condensate [J].
Khadzhi, P. I. ;
Tkachenko, D. V. .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2009, 4 (01) :101-117
[48]   Gravitational lensing: a unique probe of dark matter and dark energy [J].
Ellis, Richard S. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1914) :967-987
[49]   Microlensing of gravitational waves by dark matter structures [J].
Fairbairn, Malcolm ;
Urrutia, Juan ;
Vaskonen, Ville .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (07)
[50]   Gravitational waves from dark matter isocurvature [J].
Domenech, Guillem ;
Passaglia, Samuel ;
Renaux-Petel, Sebastien .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (03)