KURAMOTO ORDER PARAMETERS AND PHASE CONCENTRATION FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION

被引:1
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Morales, Javier [4 ]
Zhang, Yinglong [5 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Hoegiro 87, Seoul 130722, South Korea
[4] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA
[5] Korea Adv Inst Sci & Technol, Stochast Anal & Applicat Res Ctr, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Emergent dynamics; Kuramoto model; frustration; order parameters; synchronization; LOCKED STATES; INCOHERENT STATE; SYNCHRONIZATION; MODEL; OSCILLATORS; STABILITY; ENTRAINMENT; POPULATIONS; INSTABILITY; EMERGENCE;
D O I
10.3934/cpaa.2021013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study phase concentration for the Kuramoto-Sakaguchi(K-S) equation with frustration via detailed estimates on the dynamics of order parameters. The Kuramoto order parameters measure the overall degree of phase concentrations. When the coupling strength is sufficiently large and the size of frustration parameter is sufficiently small, we show that the amplitude order parameter has a positive lower bound uniformly in time, and we also show that the total mass concentrates on the translated phase order parameter by a frustration parameter asymptotically, whereas the mass in the region around the antipodal point decays to zero exponentially fast.
引用
收藏
页码:2579 / 2612
页数:34
相关论文
共 50 条
[31]   Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators [J].
Ichiki, Akihisa ;
Okumura, Keiji .
PHYSICAL REVIEW E, 2020, 101 (02)
[32]   Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia [J].
Li, Zhuchun ;
Ha, Seung-Yeal .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (02) :357-382
[33]   Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase [J].
Banerjee, Amitava .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[34]   Numerical and analytical investigation of the chimera state excitation conditions in the Kuramoto-Sakaguchi oscillator network [J].
Frolov, Nikita S. ;
Goremyko, Mikhail V. ;
Makarov, Vladimir V. ;
Maksimenko, Vladimir A. ;
Hramov, Alexander E. .
DYNAMICS AND FLUCTUATIONS IN BIOMEDICAL PHOTONICS XIV, 2017, 10063
[35]   On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay [J].
Honda H. .
Networks and Heterogeneous Media, 2023, 19 (01) :1-23
[36]   Nonlinear Instability of the Incoherent State for the Kuramoto–Sakaguchi–Fokker–Plank Equation [J].
Seung-Yeal Ha ;
Qinghua Xiao .
Journal of Statistical Physics, 2015, 160 :477-496
[37]   Phase transition in higher-order Kuramoto model with multiple δ functions distribution [J].
Shao, Xinru ;
Pan, Xingyu ;
Guo, Zerong ;
Zhou, Jie .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025,
[38]   Two order parameters for the Kuramoto model on complex networks [J].
Yook, Soon-Hyung ;
Kim, Yup .
PHYSICAL REVIEW E, 2018, 97 (04)
[39]   Fisher Information and synchronisation transitions: A case-study of a finite size multi-network Kuramoto-Sakaguchi system [J].
Glavatskiy, Kirill ;
Kalloniatis, Alexander C. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 594
[40]   First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions [J].
Pietras, Bastian ;
Deschle, Nicolas ;
Daffertshofer, Andreas .
PHYSICAL REVIEW E, 2018, 98 (06)