KURAMOTO ORDER PARAMETERS AND PHASE CONCENTRATION FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION

被引:1
|
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Morales, Javier [4 ]
Zhang, Yinglong [5 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Hoegiro 87, Seoul 130722, South Korea
[4] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA
[5] Korea Adv Inst Sci & Technol, Stochast Anal & Applicat Res Ctr, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Emergent dynamics; Kuramoto model; frustration; order parameters; synchronization; LOCKED STATES; INCOHERENT STATE; SYNCHRONIZATION; MODEL; OSCILLATORS; STABILITY; ENTRAINMENT; POPULATIONS; INSTABILITY; EMERGENCE;
D O I
10.3934/cpaa.2021013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study phase concentration for the Kuramoto-Sakaguchi(K-S) equation with frustration via detailed estimates on the dynamics of order parameters. The Kuramoto order parameters measure the overall degree of phase concentrations. When the coupling strength is sufficiently large and the size of frustration parameter is sufficiently small, we show that the amplitude order parameter has a positive lower bound uniformly in time, and we also show that the total mass concentrates on the translated phase order parameter by a frustration parameter asymptotically, whereas the mass in the region around the antipodal point decays to zero exponentially fast.
引用
收藏
页码:2579 / 2612
页数:34
相关论文
共 50 条
  • [1] Emergence of phase concentration for the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Kim, Young-Heon
    Morales, Javier
    Park, Jinyeong
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401
  • [2] NONLINEAR STABILITY OF STATIONARY SOLUTIONS TO THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Park, Hansol
    Zhang, Yinglong
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (03) : 427 - 461
  • [3] A DIFFUSION LIMIT FOR THE PARABOLIC KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Ha, Seung-Yeal
    Shim, Woojoo
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1591 - 1638
  • [4] From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation
    Kawamura, Yoji
    PHYSICAL REVIEW E, 2014, 89 (01)
  • [5] Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Xiao, Qinghua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2430 - 2457
  • [6] ASYMPTOTIC STABILITY OF THE PHASE-HOMOGENEOUS SOLUTION TO THE KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Choi, Young-Pil
    Ha, Seung-Yeal
    Xiao, Qinghua
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 3188 - 3235
  • [7] Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model
    Brede, Markus
    Kalloniatis, Alexander C.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [8] Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration
    Ha, Seung-Yeal
    Kim, Doheon
    Lee, Jaeseung
    Zhang, Yinglong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [9] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) : 978 - 1022
  • [10] ROBUSTNESS IN THE INSTABILITY OF THE INCOHERENT STATE FOR THE KURAMOTO-SAKAGUCHI-FOKKER-PLANCK EQUATION WITH FRUSTRATION
    Ha, Seung-yeal
    Lee, Jaeseung
    Zhang, Yinglong
    QUARTERLY OF APPLIED MATHEMATICS, 2019, 77 (03) : 631 - 654