A preliminary analysis of AI based smartphone application for diagnosis of COVID-19 using chest X-ray images

被引:28
作者
Rangarajan, Aravind Krishnaswamy [1 ]
Ramachandran, Hari Krishnan [1 ]
机构
[1] SASTRA Deemed Univ, Sch Mech Engn, Thanjavur 613401, Tamil Nadu, India
关键词
Convolutional Neural Network; Deep learning; COVID-19; Chest X-rays; GAN; Smartphone application; DEEP; CORONAVIRUS; SUPPORT;
D O I
10.1016/j.eswa.2021.115401
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 outbreak has catastrophically affected both public health system and world economy. Swift diagnosis of the positive cases will help in providing proper medical attention to the infected individuals and will also aid in effective tracing of their contacts to break the chain of transmission. Blending Artificial Intelligence (AI) with chest X-ray images and incorporating these models in a smartphone can be handy for the accelerated diagnosis of COVID-19. In this study, publicly available datasets of chest X-ray images have been utilized for training and testing of five pre-trained Convolutional Neural Network (CNN) models namely VGG16, MobileNetV2, Xception, NASNetMobile and InceptionResNetV2. Prior to the training of the selected models, the number of images in COVID-19 category has been increased employing traditional augmentation and Generative Adversarial Network (GAN). The performance of the five pre-trained CNN models utilizing the images generated with the two strategies has been compared. In the case of models trained using augmented images, Xception (98%) and MobileNetV2 (97.9%) turned out to be the ones with highest validation accuracy. Xception (98.1%) and VGG16 (98.6%) emerged as models with the highest validation accuracy in the models trained with synthetic GAN images. The best performing models have been further deployed in a smartphone and evaluated. The overall results suggest that VGG16 and Xception, trained with the synthetic images created using GAN, performed better compared to models trained with augmented images. Among these two models VGG16 produced an encouraging Diagnostic Odd Ratio (DOR) with higher positive likelihood and lower negative likelihood for the prediction of COVID-19.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Deep learning based detection and analysis of COVID-19 on chest X-ray images
    Rachna Jain
    Meenu Gupta
    Soham Taneja
    D. Jude Hemanth
    Applied Intelligence, 2021, 51 : 1690 - 1700
  • [22] COVID-19 Diagnosis System Based on Chest X-ray Images Using Optimized Convolutional Neural Network
    Chen, Mu-Yen
    Chiang, Po-Ru
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2023, 19 (03)
  • [23] Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images
    Sunnetci, Kubilay Muhammed
    Alkan, Ahmet
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 216
  • [24] CovMediScanX: A medical imaging solution for COVID-19 diagnosis from chest X-ray images
    Nair, Smitha Sunil Kumaran
    David, Leena R.
    Shariff, Abdulwahid
    Al Maskari, Saqar
    Al Mawali, Adhra
    Weis, Sammy
    Fouad, Taha
    Ozsahin, Dilber Uzun
    Alshuweihi, Aisha
    Obaideen, Abdulmunhem
    Elshami, Wiam
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2024, 55 (02) : 272 - 280
  • [25] COVID-19 detection from chest X-ray images using transfer learning
    El Houby, Enas M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Detection of COVID-19 from chest x-ray images using transfer learning
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [27] CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images
    Hussain, Emtiaz
    Hasan, Mahmudul
    Rahman, Md Anisur
    Lee, Ickjai
    Tamanna, Tasmi
    Parvez, Mohammad Zavid
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [28] COVID-19 Detection from Chest X-ray Images Using Feature Fusion and Deep Learning
    Nur-A-Alam
    Ahsan, Mominul
    Based, Md. Abdul
    Haider, Julfikar
    Kowalski, Marcin
    SENSORS, 2021, 21 (04) : 1 - 30
  • [29] New Optimized Deep Learning Application for COVID-19 Detection in Chest X-ray Images
    Karim, Ahmad Mozaffer
    Kaya, Hilal
    Alcan, Veysel
    Sen, Baha
    Hadimlioglu, Ismail Alihan
    SYMMETRY-BASEL, 2022, 14 (05):
  • [30] COVID-19 Pneumonia Diagnosis Using Chest X-ray Radiography and Deep Learning
    Griner, Dalton
    Zhang, Ran
    Tie, Xin
    Zhang, Chengzhu
    Garrett, John
    Li, Ke
    Chen, Guang-Hong
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597