Machine learning electron density in sulfur crosslinked carbon nanotubes

被引:44
作者
Alred, John M. [1 ]
Bets, Ksenia V. [1 ]
Xie, Yu [1 ]
Yakobson, Boris I. [1 ]
机构
[1] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
REACTIVE FORCE-FIELD; RUBBER; COMPOSITES; STRENGTH; FRICTION; BEHAVIOR;
D O I
10.1016/j.compscitech.2018.03.035
中图分类号
TB33 [复合材料];
学科分类号
摘要
Mechanical strengthening of composite materials that include carbon nanotubes (CNT) requires strong inter bonding to achieve significant CNT-CNT or CNT-matrix load transfer. The same principle is applicable to the improvement of CNT bundles and calls for covalent crosslinks between individual tubes. In this work, sulfur crosslinks are studied using a combination of density functional theory (DFT) and classical molecular dynamics (MD). Atomic chains of at least two sulfur atoms or more are shown to be stable between both zigzag and armchair CNTs. All types of crosslinked CNTs exhibit significantly improved load transfer. Moreover, sulfur crosslinks show evidence of a cooperative self-healing mechanism allowing for links to rebond once broken leading to sustained load transfer under shear loading. Additionally, a general approach for utilizing machine learning for assessing the ground state electron density is developed and applied to these sulfur crosslinked CNTs.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 47 条
  • [31] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  • [32] Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements
    Peng, Bei
    Locascio, Mark
    Zapol, Peter
    Li, Shuyou
    Mielke, Steven L.
    Schatz, George C.
    Espinosa, Horacio D.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (10) : 626 - 631
  • [33] Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
  • [34] FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS
    PLIMPTON, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) : 1 - 19
  • [35] Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
    Rupp, Matthias
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    von Lilienfeld, O. Anatole
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (05)
  • [36] How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
    Schuett, K. T.
    Glawe, H.
    Brockherde, F.
    Sanna, A.
    Mueller, K. R.
    Gross, E. K. U.
    [J]. PHYSICAL REVIEW B, 2014, 89 (20)
  • [37] Structural nanocomposites for aerospace applications
    Siochi, Emilie J.
    Harrison, Joycelyn S.
    [J]. MRS BULLETIN, 2015, 40 (10) : 829 - 835
  • [38] Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes
    Sui, G.
    Zhong, W. H.
    Yang, X. P.
    Yu, Y. H.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 485 (1-2): : 524 - 531
  • [39] Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
    Thompson, A. P.
    Swiler, L. P.
    Trott, C. R.
    Foiles, S. M.
    Tucker, G. J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 285 : 316 - 330
  • [40] Exceptionally high Young's modulus observed for individual carbon nanotubes
    Treacy, MMJ
    Ebbesen, TW
    Gibson, JM
    [J]. NATURE, 1996, 381 (6584) : 678 - 680