Phosphorus-doping promotes the electrochemical etching of metals to nanoporous electrodes for efficient and durable overall water splitting

被引:10
作者
Feng, Ruohan [1 ]
Ye, Zhenhua [2 ]
Jiang, Qu [1 ]
Li, Chuanwei [2 ]
Gu, Jianfeng [2 ]
Song, Fang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Mat Modificat & Modelling, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoporous electrodes; Electrocatalysts; Water splitting; OER; HER; OXYGEN EVOLUTION REACTION; LAYERED DOUBLE HYDROXIDE; THICK-FILMS; NICKEL; CATALYST; PERFORMANCE; CORROSION; IRON; STABILITY; REDOX;
D O I
10.1016/j.jpowsour.2022.231774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalysts play a central role in electrochemical water splitting to store renewable energy in the chemical fuel of hydrogen. Nanoporous metal electrodes are promising to boost hydrogen production efficiency while challenging in synthesis. Here, a phosphorus-doping assisted electrochemical etching strategy is developed to construct highly nanoporous surfaces on metal electrodes, leading to a remarkable catalytic performance for overall water splitting under lab-level or industrial electrolysis conditions. Specifically, the nanoporous FeCo-NiCu foil shows 46 times higher electrochemical surface area, lowering the overpotentials by 102 mV for oxygen evolution reaction and 157 mV for hydrogen evolution reaction. The viability of the strategy is further demonstrated in the prevailing industrial electrodes of nickel meshes, enabling a cell voltage of only 1.931 V under the harsh industrial electrolytic condition (80 degrees C, 30 wt% KOH, and a current density of 500 mA cm(-2)). It is 126 mV lower than that of a bare nickel mesh-based electrolyzer and corresponds to a similar to 4% improvement in energy-conversion efficiency. This work offers a facile and ease-to-scale-up approach for the upgrading of widespread metal electrodes, possessing great prospects in energy conversion and storage devices including electrolyzers, fuel cells, batteries, and supercapacitors.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Powder Catalyst Fixation for Post-Electrolysis Structural Characterization of NiFe Layered Double Hydroxide Based Oxygen Evolution Reaction Electrocatalysts [J].
Andronescu, Corina ;
Barwe, Stefan ;
Ventosa, Edgar ;
Masa, Justus ;
Vasile, Eugeniu ;
Konkena, Bharathi ;
Moeller, Sandra ;
Schuhmann, Wolfgang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (37) :11258-11262
[2]   Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films [J].
Barwe, Stefan ;
Masa, Justus ;
Andronescu, Corina ;
Mei, Bastian ;
Schuhmann, Wolfgang ;
Ventosa, Edgar .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (29) :8573-8577
[3]   Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts [J].
Binninger, Tobias ;
Mohamed, Rhiyaad ;
Waltar, Kay ;
Fabbri, Emiliana ;
Levecque, Pieter ;
Koetz, Ruediger ;
Schmidt, Thomas J. .
SCIENTIFIC REPORTS, 2015, 5
[4]   3D Printing for Electrochemical Energy Applications [J].
Browne, Michelle P. ;
Redondo, Edurne ;
Pumera, Martin .
CHEMICAL REVIEWS, 2020, 120 (05) :2783-2810
[5]   Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys [J].
Chang, Jeng-Kuei ;
Hsu, Shih-Hsun ;
Sun, I-Wen ;
Tsai, Wen-Ta .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) :1371-1376
[6]   Achieving Rich and Active Alkaline Hydrogen Evolution Heterostructures via Interface Engineering on 2D 1T-MoS2 Quantum Sheets [J].
Chen, Wenshu ;
Gu, Jiajun ;
Du, Yongping ;
Song, Fang ;
Bu, Fanxing ;
Li, Jinghan ;
Yuan, Yang ;
Luo, Ruichun ;
Liu, Qinglei ;
Zhang, Di .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (25)
[7]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[8]   Electrokinetic Analysis of Poorly Conductive Electrocatalytic Materials [J].
Chung, Dong Young ;
Park, Subin ;
Lopes, Pietro P. ;
Stamenkovic, Vojislav R. ;
Sung, Yung-Eun ;
Markovic, Nenad M. ;
Strmcnik, Dusan .
ACS CATALYSIS, 2020, 10 (09) :4990-4996
[9]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[10]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+