Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging

被引:52
作者
Lemkaddem, Alia [1 ]
Daducci, Alessandro [1 ,6 ,7 ]
Kunz, Nicolas [2 ]
Lazeyras, Francois [3 ]
Seeck, Margitta [4 ,5 ]
Thiran, Jean-Philippe [1 ,6 ,7 ]
Vulliemoz, Serge [4 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Labs LTS5, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Ctr Imagerie BioMed CIBM AIT, Lausanne, Switzerland
[3] Univ Hosp Geneva, Dept Radiol, Geneva, Switzerland
[4] Univ Hosp, Neurol Clin, Epilepsy Unit, Lausanne, Switzerland
[5] Fac Med Geneva, Geneva, Switzerland
[6] Univ Hosp, Dept Radiol, Lausanne, Switzerland
[7] Univ Lausanne, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Diffusion MRI; Connectome; Tractography; Network measures; DSI; GFA; NODDI; Temporal lobe epilepsy; MRI; ABNORMALITIES; NETWORK; TRACTOGRAPHY; CONNECTOME; IMPAIRMENT; ORGANIZATION; ORIENTATION; THICKNESS; MEMORY;
D O I
10.1016/j.nicl.2014.07.013
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the graymatter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 60 条
[1]   SELECTIVE COGNITIVE IMPAIRMENT DURING FOCAL AND GENERALIZED EPILEPTIFORM EEG ACTIVITY [J].
AARTS, JHP ;
BINNIE, CD ;
SMIT, AM ;
WILKINS, AJ .
BRAIN, 1984, 107 (MAR) :293-308
[2]   Side Matters: Diffusion Tensor Imaging Tractography in Left and Right Temporal Lobe Epilepsy [J].
Ahmadi, M. E. ;
Hagler, D. J., Jr. ;
McDonald, C. R. ;
Tecoma, E. S. ;
Iragui, V. J. ;
Dale, A. M. ;
Halgren, E. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2009, 30 (09) :1740-1747
[3]  
[Anonymous], 2011, Nonparametric statistical inference, DOI DOI 10.1007/978-3-642-04898-2_420
[4]   Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region [J].
Bernasconi, N ;
Bernasconi, A ;
Caramanos, Z ;
Antel, SB ;
Andermann, F ;
Arnold, DL .
BRAIN, 2003, 126 :462-469
[5]   Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: Insights on the relation between mesiotemporal connectivity and cortical atrophy [J].
Bernhardt, Boris C. ;
Worsley, Keith J. ;
Besson, Pierre ;
Concha, Luis ;
Lerch, Jason P. ;
Evans, Alan C. ;
Bernasconi, Neda .
NEUROIMAGE, 2008, 42 (02) :515-524
[6]   Cortical thickness analysis in temporal lobe epilepsy Reproducibility and relation to outcome [J].
Bernhardt, Boris C. ;
Bernasconi, Neda ;
Concha, Luis ;
Bernasconi, Andrea .
NEUROLOGY, 2010, 74 (22) :1776-1784
[7]   Imaging structural and functional brain networks in temporal lobe epilepsy [J].
Bernhardt, Boris C. ;
Hong, SeokJun ;
Bernasconi, Andrea ;
Bernasconi, Neda .
FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
[8]   Graph-Theoretical Analysis Reveals Disrupted Small-World Organization of Cortical Thickness Correlation Networks in Temporal Lobe Epilepsy [J].
Bernhardt, Boris C. ;
Chen, Zhang ;
He, Yong ;
Evans, Alan C. ;
Bernasconi, Neda .
CEREBRAL CORTEX, 2011, 21 (09) :2147-2157
[9]   Occipital epilepsy: lateral versus mesial [J].
Blume, WT ;
Wiebe, S ;
Tapsell, LM .
BRAIN, 2005, 128 :1209-1225
[10]   Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy [J].
Bonilha, L ;
Rorden, C ;
Castellano, G ;
Pereira, F ;
Rio, PA ;
Cendes, F ;
Li, LM .
ARCHIVES OF NEUROLOGY, 2004, 61 (09) :1379-1384