Level-set simulations of soluble surfactant driven flows

被引:32
作者
de langavant, Charles Cleret [1 ]
Guittet, Arthur [1 ]
Theillard, Maxime [3 ]
Temprano-Coleto, Fernando [1 ]
Gibou, Frederic [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
Navier-Stokes; Incompressible; Soluble surfactants; Surfactant driven flows; Marangoni forces; Quad/Octrees; Adaptive mesh refinement; Stable projection method; NAVIER-STOKES EQUATIONS; INTERFACIAL FLOWS; PROJECTION METHOD;
D O I
10.1016/j.jcp.2017.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an approach to simulate the diffusion, advection and adsorption-desorption of a material quantity defined on an interface in two and three spatial dimensions. We use a level-set approach to capture the interface motion and a Quad/Octree data structure to efficiently solve the equations describing the underlying physics. Coupling with a Navier-Stokes solver enables the study of the effect of soluble surfactants that locally modify the parameters of surface tension on different types of flows. The method is tested on several benchmarks and applied to three typical examples of flows in the presence of surfactant: a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau-Levich coating problem. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 297
页数:27
相关论文
共 41 条
[31]   Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions [J].
Papac, Joseph ;
Gibou, Frederic ;
Ratsch, Christian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (03) :875-889
[32]   PREDICTION OF CRITICAL MACH NUMBER FOR STORE CONFIGURATIONS [J].
PURVIS, JW ;
BURKHALTER, JE .
AIAA JOURNAL, 1979, 17 (11) :1170-1177
[33]  
Stone H. A., 1989, J FLUID MECH
[34]  
Stone H. A., 1989, PHYS FLUIDS
[35]   Tree methods for moving interfaces [J].
Strain, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (02) :616-648
[36]   Numerical Simulations of Flows with Moving Contact Lines [J].
Sui, Yi ;
Ding, Hang ;
Spelt, Peter D. M. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 46, 2014, 46 :97-119
[37]   A LEVEL SET APPROACH FOR COMPUTING SOLUTIONS TO INCOMPRESSIBLE 2-PHASE FLOW [J].
SUSSMAN, M ;
SMEREKA, P ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (01) :146-159
[38]  
Teigen K.E., 2009, COMMUN MATH SCI
[39]  
Theillard M., 2012, J SCI COMPUT
[40]  
Wang D, 2008, J COMPUT MATH, V26, P838