Level-set simulations of soluble surfactant driven flows

被引:32
作者
de langavant, Charles Cleret [1 ]
Guittet, Arthur [1 ]
Theillard, Maxime [3 ]
Temprano-Coleto, Fernando [1 ]
Gibou, Frederic [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
Navier-Stokes; Incompressible; Soluble surfactants; Surfactant driven flows; Marangoni forces; Quad/Octrees; Adaptive mesh refinement; Stable projection method; NAVIER-STOKES EQUATIONS; INTERFACIAL FLOWS; PROJECTION METHOD;
D O I
10.1016/j.jcp.2017.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an approach to simulate the diffusion, advection and adsorption-desorption of a material quantity defined on an interface in two and three spatial dimensions. We use a level-set approach to capture the interface motion and a Quad/Octree data structure to efficiently solve the equations describing the underlying physics. Coupling with a Navier-Stokes solver enables the study of the effect of soluble surfactants that locally modify the parameters of surface tension on different types of flows. The method is tested on several benchmarks and applied to three typical examples of flows in the presence of surfactant: a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau-Levich coating problem. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 297
页数:27
相关论文
共 41 条
[1]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[2]   A partial differential equation approach to multidimensional extrapolation [J].
Aslam, TD .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (01) :349-355
[3]  
Borhan A., 1992, PHYS FLUIDS
[4]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[5]   Numerical prediction of the film thickening due to surfactants in the Landau-Levich problem [J].
Campana, Diego M. ;
Ubal, Sebastian ;
Giavedoni, Maria D. ;
Saita, Fernando A. .
PHYSICS OF FLUIDS, 2010, 22 (03) :1-9
[6]  
Cermelli P., 2005, J FLUID MECH
[7]   ADSORPTION DYNAMICS OF SURFACTANTS AT THE AIR/WATER INTERFACE - A CRITICAL-REVIEW OF MATHEMATICAL-MODELS, DATA, AND MECHANISMS [J].
CHANG, CH ;
FRANSES, EI .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 100 :1-45
[8]   A numerical method for solving incompressible viscous flow problems (Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997) [J].
Chorin, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :118-125
[9]  
Clift R., 2005, Bubbles, drops, and particles
[10]   The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia [J].
Drumright-Clarke, MA ;
Renardy, Y .
PHYSICS OF FLUIDS, 2004, 16 (01) :14-21