ADVANCED EXERGY ANALYSIS OF THE NATURAL GAS LIQUID RECOVERY PROCESS

被引:2
作者
Jovijari, Fakhrodin [1 ]
Kosarineia, Abbas [1 ]
Mehrpooya, Mehdi [1 ,2 ]
Nabhani, Nader [1 ,3 ]
机构
[1] Islamic Azad Univ, Ahvaz Branch, Dept Mech Engn, Ahvaz, Iran
[2] Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies & Environm, Tehran, Iran
[3] Petr Univ Technol PUT, Dept Mech Engn, Ahwaz, Iran
来源
THERMAL SCIENCE | 2022年 / 26卷 / 03期
关键词
natural gas liquid plant; conventional exergy analysis; advanced exergy analysis; performance improvement; NGL RECOVERY; EXERGOECONOMIC ANALYSES; THERMAL-DECOMPOSITION; REFRIGERATION CYCLE; ECONOMIC-ANALYSIS; ENERGY; PLANT; OPTIMIZATION; LNG; PERFORMANCE;
D O I
10.2298/TSCI210522311J
中图分类号
O414.1 [热力学];
学科分类号
摘要
Energy quality in each country is one of the important indicators of economic development, Which affects the economic growth of that country. Exergy analysis, considering all flow properties including pressure, temperature, composition, is a powerful way to evaluate the energy consumption of equipment such as natural gas and liquefied gas plants. Inefficiency of a system can be defined by the conventional exergy analysis method, while, irreversible resources and real potentials for system improvement can only be identified by the advanced exergy analysis method. This analysis splits conventional exergy destruction into two exogenous and endogenous parts according to origin, and also unavoidable and avoidable parts according to the ability to remove and modifications. In this method, the exergy concept was separated by considering the ideal and avoidable condition assumptions. As a real case study, a natural gas liquid plant 800, from National Iranian South Oil Company located in southwest of Iran was considered to be investigated by conventional exergy analysis, advanced exergy analysis methods. The results of conventional exergy analysis illustrated that the highest amount of exergy destruction belonged to compressor and heat exchanger with 509.99 kW and 629.04 kW, respectively. However, in the case of heat exchanger, despite having the highest rate of exergy destruction, it is not considered in modification priorities due to its low avoidable exergy destruction value. Also, advanced exergy analysis suggested that the exergy destruction of the compressor and heat exchanger will be reduced by improving performance of these components.
引用
收藏
页码:2287 / 2300
页数:14
相关论文
共 43 条
[1]   Advanced low exergy (ADLOWEX) modeling and analysis of a building from the primary energy transformation to the environment [J].
Acikkalp, Emin ;
Yucer, Cern Tahsin ;
Hepbasli, Arif ;
Karakoc, T. Hikmet .
ENERGY AND BUILDINGS, 2014, 81 :281-286
[2]   Advanced exergy analysis of an electricity-generating facility using natural gas [J].
Acikkalp, Emin ;
Aras, Haydar ;
Hepbasli, Arif .
ENERGY CONVERSION AND MANAGEMENT, 2014, 82 :146-153
[3]  
[Anonymous], 2019, BP STAT REV WORLD EN
[4]  
[Anonymous], AHVAZIR
[5]   Evaluation of the cryogenic helium recovery process from natural gas based on flash separation by advanced exergy cost method - Linde modified process [J].
Ansarinasab, Hojat ;
Mehrpooya, Mehdi ;
Parivazh, Mohammad Mehdi .
CRYOGENICS, 2017, 87 :1-11
[6]   Evaluation of novel process configurations for coproduction of LNG and NGL using advanced exergoeconomic analysis [J].
Ansarinasab, Hojat ;
Mehrpooya, Mehdi .
APPLIED THERMAL ENGINEERING, 2017, 115 :885-898
[7]   Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system [J].
Ansarinasab, Hojat ;
Mehrpooya, Mehdi ;
Mohammadi, Amin .
JOURNAL OF CLEANER PRODUCTION, 2017, 144 :248-259
[8]   Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production [J].
Anvari, Simin ;
Saray, Rahim Khoshbakhti ;
Bahlouli, Keyvan .
ENERGY, 2015, 91 :925-939
[9]   Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous [J].
Balli, Ozgur .
APPLIED THERMAL ENGINEERING, 2017, 111 :152-169
[10]   Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: Advanced exergy and advanced exergoeconomic analyses [J].
Dai, Baomin ;
Zhu, Kai ;
Wang, Yabo ;
Sun, Zhili ;
Liu, Zekuan .
ENERGY CONVERSION AND MANAGEMENT, 2019, 197