Parametric analysis of RNA-seq expression data

被引:4
|
作者
Konishi, Tomokazu [1 ]
机构
[1] Akita Prefectural Univ, Fac Bioresource Sci, Akita 0100195, Japan
关键词
DIFFERENTIAL EXPRESSION; NORMALIZATION; MODEL; SAGE;
D O I
10.1111/gtc.12372
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Various methods had been introduced for normalization and comparison of RNA-seq count data. However, they lacked objectivity because they based on ad hoc assumptions that were never verified their appropriateness. Here, we introduced a method that assumes parsimony models on data distribution; the assumptions were verified according to exploratory data analysis. As was expected, count data were lognormally distributed. The level of noise in recent data appeared to be much higher than those of microarrays. Still, the appropriate distribution model would improve certainty and accuracy of normalization, by finding out the reliable range of data. Primary cause of noise was not the principle of the methodology; that is, each read is a trial that which transcript is read. Rather, the cause would be overlooking of transcripts, and the overlooking occurred more often among lower range of data. To find out genes likely to be overlooked, number of replications would be more important than read depth, which will not prevent overlooking. Both signal and noise in the reliable range of data were distributed normally, showing the suitability to use generalized linear model to evaluate differences in expression levels. In the framework, normalized data can be compared and combined freely beyond studies.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 50 条
  • [31] Identifying differential expression for RNA-seq data with no replication
    Gim, Jungsoo
    Park, Taesung
    2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2012,
  • [32] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [33] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [34] Differential expression analysis of RNA-seq data at single-base resolution
    Frazee, Alyssa C.
    Sabunciyan, Sarven
    Hansen, Kasper D.
    Irizarry, Rafael A.
    Leek, Jeffrey T.
    BIOSTATISTICS, 2014, 15 (03) : 413 - 426
  • [35] T-REx: Transcriptome analysis webserver for RNA-seq Expression data
    Anne de Jong
    Sjoerd van der Meulen
    Oscar P. Kuipers
    Jan Kok
    BMC Genomics, 16
  • [36] An iteration normalization and test method for differential expression analysis of RNA-seq data
    Yan Zhou
    Nan Lin
    Baoxue Zhang
    BioData Mining, 7
  • [37] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    Genome Biology, 14
  • [38] Empirical Bayes Analysis of RNA-seq Data for Detection of Gene Expression Heterosis
    Jarad Niemi
    Eric Mittman
    Will Landau
    Dan Nettleton
    Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 614 - 628
  • [39] Linnorm: improved statistical analysis for single cell RNA-seq expression data
    Yip, Shun H.
    Wang, Panwen
    Kocher, Jean-Pierre A.
    Sham, Pak Chung
    Wang, Junwen
    NUCLEIC ACIDS RESEARCH, 2017, 45 (22)
  • [40] Advantages of CEMiTool for gene co-expression analysis of RNA-seq data
    Cheng, Chew Weng
    Beech, David J.
    Wheatcroft, Stephen B.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 125