Parametric analysis of RNA-seq expression data

被引:4
|
作者
Konishi, Tomokazu [1 ]
机构
[1] Akita Prefectural Univ, Fac Bioresource Sci, Akita 0100195, Japan
关键词
DIFFERENTIAL EXPRESSION; NORMALIZATION; MODEL; SAGE;
D O I
10.1111/gtc.12372
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Various methods had been introduced for normalization and comparison of RNA-seq count data. However, they lacked objectivity because they based on ad hoc assumptions that were never verified their appropriateness. Here, we introduced a method that assumes parsimony models on data distribution; the assumptions were verified according to exploratory data analysis. As was expected, count data were lognormally distributed. The level of noise in recent data appeared to be much higher than those of microarrays. Still, the appropriate distribution model would improve certainty and accuracy of normalization, by finding out the reliable range of data. Primary cause of noise was not the principle of the methodology; that is, each read is a trial that which transcript is read. Rather, the cause would be overlooking of transcripts, and the overlooking occurred more often among lower range of data. To find out genes likely to be overlooked, number of replications would be more important than read depth, which will not prevent overlooking. Both signal and noise in the reliable range of data were distributed normally, showing the suitability to use generalized linear model to evaluate differences in expression levels. In the framework, normalized data can be compared and combined freely beyond studies.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 50 条
  • [1] A Semi-parametric Bayesian Approach for Differential Expression Analysis of RNA-seq Data
    Liu, Fangfang
    Wang, Chong
    Liu, Peng
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 555 - 576
  • [2] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [3] A comparison of methods for differential expression analysis of RNA-seq data
    Soneson, Charlotte
    Delorenzi, Mauro
    BMC BIOINFORMATICS, 2013, 14
  • [4] A Semi-parametric Bayesian Approach for Differential Expression Analysis of RNA-seq Data
    Fangfang Liu
    Chong Wang
    Peng Liu
    Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 555 - 576
  • [5] A scaling normalization method for differential expression analysis of RNA-seq data
    Robinson, Mark D.
    Oshlack, Alicia
    GENOME BIOLOGY, 2010, 11 (03):
  • [6] A comparison of methods for differential expression analysis of RNA-seq data
    Charlotte Soneson
    Mauro Delorenzi
    BMC Bioinformatics, 14
  • [7] A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data
    Zhang, Zong Hong
    Jhaveri, Dhanisha J.
    Marshall, Vikki M.
    Bauer, Denis C.
    Edson, Janette
    Narayanan, Ramesh K.
    Robinson, Gregory J.
    Lundberg, Andreas E.
    Bartlett, Perry F.
    Wray, Naomi R.
    Zhao, Qiong-Yi
    PLOS ONE, 2014, 9 (08):
  • [8] LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data
    Bingqing Lin
    Li-Feng Zhang
    Xin Chen
    BMC Genomics, 15
  • [9] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [10] Differential Expression Analysis in RNA-seq Data Using a Geometric Approach
    Tambonis, Tiago
    Boareto, Marcelo
    Leite, Vitor B. P.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (11) : 1257 - 1265