Geometric and energy-aware decomposition of the Navier-Stokes equations: A port-Hamiltonian approach

被引:16
作者
Califano, Federico [1 ]
Rashad, Ramy [1 ]
Schuller, Frederic P. [2 ]
Stramigioli, Stefano [1 ]
机构
[1] Univ Twente, Robot & Mechatron Dept, NL-7522 NH Enschede, Netherlands
[2] Univ Twente, Dept Appl Math, NL-7522 NH Enschede, Netherlands
基金
欧洲研究理事会;
关键词
EXTERIOR CALCULUS; FORMULATION; SYSTEMS;
D O I
10.1063/5.0048359
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A port-Hamiltonian model for compressible Newtonian fluid dynamics is presented in entirely coordinate-independent geometric fashion. This is achieved by the use of tensor-valued differential forms that allow us to describe the interconnection of the power preserving structure which underlies the motion of perfect fluids to a dissipative port which encodes Newtonian constitutive relations of shear and bulk stresses. The relevant diffusion and the boundary terms characterizing the Navier-Stokes equations on a general Riemannian manifold arise naturally from the proposed construction.
引用
收藏
页数:15
相关论文
共 29 条
  • [1] Abraham R., 2012, Manifolds, Tensor Analysis, and Applications
  • [2] A port -Hamiltonian formulation of the Navier-Stokes equations for reactive flows
    Altmann, R.
    Schulze, P.
    [J]. SYSTEMS & CONTROL LETTERS, 2017, 100 : 51 - 55
  • [3] [Anonymous], 2013, TOPOLOGICAL METHODS
  • [4] Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
  • [5] Califano F., 2021, ANNU REV CONTROL
  • [6] The formulation of the Navier-Stokes equations on Riemannian manifolds
    Chan, Chi Hin
    Czubak, Magdalena
    Disconzi, Marcelo M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 335 - 346
  • [7] Energy dissipation in flows through curved spaces
    Debus, J. -D.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Duindam V, 2009, MODELING AND CONTROL OF COMPLEX PHYSICAL SYSTEMS: THE PORT-HAMILTONIAN APPROACH, P1, DOI 10.1007/978-3-642-03196-0
  • [9] Frenkel T., 2011, The Geometry of Physics, V3
  • [10] Gilbert A.D., 2019, ARXIV191106613PHYSIC